期刊文献+

Environmental application and ecological significance of nano-zero valent iron 被引量:13

Environmental application and ecological significance of nano-zero valent iron
原文传递
导出
摘要 Toxicity studies considering both the bare and stabilized forms of zero valent iron nanoparticles(nZVI) could be timely, given that ecological risks identified are minimized through modification or with substitution of approaches in the synthesis, development and environmental application of the nanoparticles before succeeding to volume production.This review is focused on the fate, transport and toxicological implications of the bare nZVI and surface modified particles used for environmental applications. Toxicity studies considering both the bare and stabilized forms of zero valent iron nanoparticles(nZVI) could be timely, given that ecological risks identified are minimized through modification or with substitution of approaches in the synthesis, development and environmental application of the nanoparticles before succeeding to volume production.This review is focused on the fate, transport and toxicological implications of the bare nZVI and surface modified particles used for environmental applications.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第6期88-98,共11页 环境科学学报(英文版)
关键词 Nano zero valent iron Stabilized form of nZVI Toxicity Nano zero valent iron Stabilized form of nZVI Toxicity
  • 相关文献

参考文献131

  • 1Adewuyi, Y.G., Sakyi, N.Y., 2013. Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature. Ind. Eng. Chern. Res. 52 (33), 11702-11711.
  • 2Agrawal, A., Tratnyek, P.G., 1995. Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 30 (1), 153-160.
  • 3Al-Shamsi, M.A., Thomson, N.R., 2013. Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Ind. Eng. Chern. Res. 52 (38), 13564-13571.
  • 4Anipsitakis, G.P., Dionysiou, D.D., 2004. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38 (13), 3705-3712.
  • 5Astrup, T., Stipp, S.L.S., Christensen, T.H., 2000. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron. Environ. Sci. Technol. 34 (19),4163-4168.
  • 6Auffan, M.L., Achouak, W., Rose, J.R., Roncato, M.A., Chaneac, C., Waite, D.T., et al., 2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 42 (17), 6730-6735.
  • 7Barnhart, J., 1997. Chromium chemistry and implications for environmental fate and toxicity. J. Soil Contam. 6 (6), 561-568.
  • 8Block, P.A., Brown, R.A., Robinson, D., 2004. Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation. In: Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds. Battle Press, OH, Columbus.
  • 9Blowes, D.W., Ptacek, C.J., Jambor, J.L., 1997. In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ. Sci. Technol. 31 (12), 3348-3357.
  • 10Burton, A., 2009. Hit or miss?: benefits and risks of using nanoparticles for in situ remediation. Environ. Health Perspect. 117, A552.

同被引文献104

引证文献13

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部