期刊文献+

地聚物混凝土与钢筋黏结性能研究 被引量:17

Study on bond behavior between geopolymer concrete and steel bars
下载PDF
导出
摘要 对24个钢筋-地聚物混凝土黏结试件进行中心拉拔试验,分析钢筋与地聚物混凝土的黏结破坏机理,考察地聚物混凝土抗压和劈裂抗拉强度、钢筋类型、钢筋直径、混凝土保护层厚度及钢筋黏结长度等因素对钢筋-地聚物混凝土黏结性能的影响,并与钢筋-普通水泥混凝土之间的黏结性能进行比较。实验结果表明,当钢筋的黏结长度为5d时,相对保护层厚度c/d=3.67为变形钢筋-地聚物混凝土中心拉拔试件破坏模式由拔出破坏向劈裂破坏转变的临界点;对于d=14 mm的钢筋-地聚物混凝土中心拉拔试件,9d的钢筋黏结长度可使钢筋屈服先于钢筋拔出或混凝土劈裂发生。基于实验结果,还建立了变形钢筋-地聚物混凝土的黏结-滑移本构模型,采用该模型计算得到的不同直径的变形钢筋-地聚物混凝土的黏结-滑移曲线与实测曲线接近。 Pull-out tests were carried out on 24 specimens for the bond behavior between geopolymer concrete and embedded steel bars, so that the bond failure mechanism can be analyzed. Firstly, the influences of compressive strength and splitting tensile strength of geopolymer concrete, type of steel bars, diameter of steel bars, thickness of concrete cover and anchorage length of steel bars on the bond behavior between geopolymer concrete and steel bars were investigated, and then the bond behavior was compared with that between steel bars and ordinary Portland cement concrete. The test results show that for those specimens with anchorage length of 5d, the relative thickness of concrete cover c/d= 3.67 shall be the critical point of failure modes changing from the pull-out failure to the splitting failure of geopolymer concrete. For the specimens with bar diameter of 14 mm subjected to centrally pulling out, the steel bar may yield before pulling out of steel bar or splitting of concrete if the anchorage length is 9d. The prepared geopolymer concrete exhibit similar compresside and split tensile strength with that of ordinary cement concrete, but higher bond strength with steel bars. Based on the test results, a constitutive model was established for the bond-slip behavior between deformed bars and geopolymer concrete. The bond-slip curves predicted by this model have good agreement with the measured curves of geopolymer concrete specimens embedded with steel bars.
出处 《土木工程学报》 EI CSCD 北大核心 2016年第7期107-115,共9页 China Civil Engineering Journal
基金 国家自然科学基金项目资助(51478195) 国家重点基础研究发展计划资助(973计划:2011CB013800) 华南理工大学亚热带建筑科学国家重点实验室自主课题资助(2013ZC21)
关键词 地聚物混凝土 钢筋 黏结性能 黏结强度 黏结一滑移模型 geopolymer concrete steel bar bond property bond strength bondslip model
  • 相关文献

参考文献15

  • 1Duxson P,Provis J L,Lukey G C, et al. The role ofinorganic polymer technology in the development of “ greenconcrete” [ J]. Cement and Concrete Research, 2007,37(12):1590-1597.
  • 2Davidovits J. Geopolymers in organic polymeric new materials[J ]. Journal of Thermal Analysis, 1997, 37 ( 8 ):1633-1656.
  • 3Menna C,Asprone D,Ferone C,et al. Use of geopolymersfor composite external reinforcement of RC members [ J ].Composites Part B : Engineering, 2013 ,45( 1 ) : 1667-1676.
  • 4Kong D L, Sanjayan J G, Sagoe-Crentsil K. Comparativeperformance of geopolymers made with metakaolin and flyash after exposure to elevated temperatures[ J] . Cement &Concrete Research, 2007 ,37( 12) : 1583-1589.
  • 5Shaikh F U A. Review of mechanical properties of shortfiber reinforced geopolymer composites[ J]. Construction &Building Materials, 2013 ,43(2) :37-49.
  • 6许金余,李为民,范飞林,白二雷.地质聚合物混凝土的冲击力学性能研究[J].振动与冲击,2009,28(1):46-50. 被引量:33
  • 7Saker P K. Bond strength of reinforcing steel embedded infly ash-based geopolymer concrete [ J ]. Materials andStructures, 2011,44 : 1021 -1030.
  • 8袁晓辉,卢哲安,范小春,张传银.无机聚合物混凝土-钢筋拉拔试验研究[J].武汉理工大学学报,2013,35(6):117-122. 被引量:10
  • 9Zhang H Y,Kodur V,Qi S L, et al. Development ofmetakaolin-fly ash based geopolymers for fire resistanceapplications [ J ]. Construction and Building Materials,2014,55(4) :38-45.
  • 10CECS:1389钢纤维混凝土试验方法[S].北京:中国计划出版社,1989.

二级参考文献23

  • 1徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-37. 被引量:220
  • 2Li Q M, Men H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [ J]. Int J Solids Struct, 2003, 40: 343-360.
  • 3Davidovits J. Mineral polymers and methods of making them [P]. Patent US4349386, 1982.
  • 4Hardjito D, Wallah S E, Rangan B V. Research into engineering properties of geopolymer concrete [ A ]. Proceedings of the International Conference on Geopolymers [ C ], Melbourne, Australia, 2002. (CD-ROM).
  • 5Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing [ J ]. Cement and Concrete Research, 2005, 35 : 1224-1232.
  • 6Pacheco-Torgal F, Castro-Gomes J P, Jalali S. Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment [ J ]. Construction and Building Materials (2006), doi : 10. 1016/ j. conbuildmat. 2006.10. 005.
  • 7Hu S G, Wang H X, Zhang G Z, et al. Bonding and abrasion resistance of geopolymeric repair material made with steel slag [ J ]. Cement and concrete composites (2007), doi : 10. 1016/j. cemconcomp. 2007.04. 004.
  • 8Soft M, van Deventer J S J, Mendis P A, et al. Engineering properties of inorganic polymer concretes (IPCs) [ J ]. Cement and Concrete Research, 2007, 37:251-257.
  • 9Zhang Y S, Sun W, Li Z J, et al. Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber [ J ]. Construction and Building Materials ( 2006 ), doi : 10. 1016/j. conbuildmat. 2006.08. 006.
  • 10GB/T50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003.

共引文献288

同被引文献156

引证文献17

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部