期刊文献+

线性自抗扰控制系统的鲁棒稳定性 被引量:6

On robust stability of linear active disturbance rejection control system
下载PDF
导出
摘要 针对线性自抗扰控制系统,研究了模型参数不确定情况下的鲁棒稳定性问题.首先给出对象为非自治模型时该系统的H∞判据.然后针对线性误差模型的状态矩阵只在某一行存在不确定参数的情况,基于奇异值理论,得到H∞判据的一种新的等价描述,把H∞范数约束转化为对奈奎斯特图的约束.之后为了降低新判据在实际应用中的保守性,对不确定性矩阵的分解方式进行优化.在此基础之上提出了一种新的方法,用于计算时变参数不确定性的最大边界,为线性自抗扰控制器设计提供理论依据.数值实例表明该方法不仅保守性小,而且计算简单. In this paper, the robust stability problem is studied for the linear active disturbance rejection control(LADRC) system in the presence of parameter uncertainties. Firstly, the H-infinity criterion is presented for the LADRC system with a non-autonomous plant. Secondly, for the case that the uncertain parameters are in the same line of the state matrix of the linear error model, a novel equivalent description of the H-infinity criterion is derived from the singular value theory.With the equivalent description, the H-infinity norm constraint is transformed to the constraint on the Nyquist diagram.Thirdly, the uncertainty matrix decomposition is carried out with optimization to reduce the conservatism of the new criterion in practical application. Based on the above work, a new approach is proposed to compute the maximal bound of time-varying parameter uncertainties and supply some theoretical basis for the design of the linear active disturbance rejection controller. Numerical examples show that the proposed approach is not only less conservative, but also simpler to calculate.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第5期662-668,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61403030)资助~~
关键词 自抗扰控制 参数不确定性 鲁棒稳定性 H∞ 奈奎斯特图 active disturbance rejection control parameter uncertainty robust stability H-infinity Nyquist diagram
  • 相关文献

参考文献18

  • 1韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23. 被引量:1009
  • 2HUANG Y, XUE W C. Active disturbance rejection control: metho- dology and theoretical analysis [J]. ISA Transactions, 2014, 53(4): 963 - 976.
  • 3GAO Z Q. Scaling and bandwidth-parameterization based controller tuning [C] //Proceedings of the 2003 American Control Conference. Denver: IEEE, 2003: 4989- 4996.
  • 4ZHENG Q, GAO Z Q. On practical applications of active disturbance rejection control [C]//Proceedings of the 29th Chinese Control Con- ference. Beijing: IEEE, 2010:6095 - 6100.
  • 5TIAN G, GAO Z Q. Frequency response analysis of active distur- bance rejection based control system [C]//IEEE Multi-conference on Systems and Control. Singapore: IEEE, 2007:1595 - 1599.
  • 6CSANK J, GAO Z Q. Uncertainty reduction through active distur- bance rejection [C]//American Control Conference. Seattle: IEEE, 2008:3689 - 3694.
  • 7WU D, CHEN K. Frequency domain analysis of non-linear active disturbance rejection control via the describing function method [J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3906 - 3914.
  • 8Chunzhe ZHAO,Yi HUANG.ADRC BASED INPUT DISTURBANCE REJECTION FOR MINIMUM-PHASE PLANTS WITH UNKNOWN ORDERS AND/OR UNCERTAIN RELATIVE DEGREES[J].Journal of Systems Science & Complexity,2012,25(4):625-640. 被引量:15
  • 9XUE W C, HUANG Y. On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems [J]. ISA Transactions, 2014, 53(4): 955 - 962.
  • 10GUO B Z, ZHAO Z L. On the convergence of tracking differentia- tor [J]. International Journal of Control, 2011, 84(4): 693 - 701.

二级参考文献38

共引文献1081

同被引文献37

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部