期刊文献+

包含广义Fibonacci数列倒数积的恒等式 被引量:4

Several identities relating to reciprocal products of generalized Fibonacci numbers
下载PDF
导出
摘要 近年来众多学者研究了关于整数序列的倒数和取整问题,该文主要研究F_k^t-1/F_k^t及k^t-1/k^t的无穷乘积的取整问题,其中t和k为正整数,F_k为广义Fibonacci数列,建立了一些包含广义Fibonacci数列及正整数序列倒数积的恒等式。 This paper is inspired by the researches relating to reciprocal sums of some integer sequences. For positive integers t and k,the infinity products of Fk^t- 1/Fk^t and k^t-1/k^t are studied,where Fk denotes the generalized Fibonacci numbers. Then several new inequalities are established to obtain the identities related to the reciprocal products of generalized Fibonacci numbers and positive integer sequences.
作者 吴振刚
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期317-320,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11371291) 陕西省自然科学基础研究计划基金资助项目(2016JQ1041) 陕西省教育厅基金资助项目(15JK1744)
关键词 FIBONACCI数列 不等式 倒数积 恒等式 取整函数 Fibonacci numbers inequality reciprocal products identity floor function
  • 相关文献

参考文献7

  • 1APOSTOL T M. Introduction to Analytic Number The- ory, Springer[ M ]. New York : Springer-Verlag, 1976.
  • 2IVIC A. The Riemann Zeta-function, Wiley [ M ]. New York : Springer-Verlag, 1985.
  • 3FERGUSSON R P. An application of Stiehjes integra- tion to the power series coefficients of the Riemann ze- ta-function [ J ]. American Mathematical Monthly, 1963, 70 : 60-61.
  • 4OHTSUKA H, NAKAMURA S. On the sum of recip- rocal Fibonacci numbers[J]. The Fibonacci Quarterly, 2008/2009, 46/47 : 153-159.
  • 5WU Z, ZHANG H. On the reciprocal sums of higher- order sequences [ J ]. Advances in Difference Equa- tions, 2013, Article ID 189.
  • 6XU Z, WANG T. The infinite sum of the cubes of re- ciprocal Pell numbers [ J]. Advances in Ditterenee E- quations, 2013, Article ID 184.
  • 7LIN X. Some identities related to Riematm Zeta-func- tion [J]. Journal of Inequalities and Applications, 2016, Article ID 32.

同被引文献12

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部