期刊文献+

基于主题与连接的局部社区划分算法

Local Community Partition Algorithm Based on Topic and Connection
下载PDF
导出
摘要 设计了一种基于主题与连接的局部社区划分算法。该算法结合节点的主题相似度和连接相似度,综合计算节点间的相似度。同时算法采用局部思想,避免了寻找初始的中心节点。此外,该算法引入了局部模块度作为社区划分的结束判断条件。该算法被应用到参与"海地地震"相关话题讨论的Twitter微博用户数据集上,并与单纯基于链接、单纯基于主题以及基于主题和链接的社区划分算法在同样数据集的划分结果进行对比,结果表明:从纯度和熵的评估角度看,本文算法更具优越性。 Abstract: A community partition algorithm is designed based on theme and connection. Both theme and connection similarity of nodes are integrated in the algorithm, which also adopts a localized way to avoid the searching of good initial nodes. In the proposed algorithm, local modularity is accepted as a termina- ting condition of community partition. The algorithm is applied to a set of Twitter users who had joined into the topics related to Haiti earthquake. Three baseline community partition algorithms, i. e. , an al- gorithm simply based on link, an algorithm simply based on topic, and an algorithm based on both topic and link, are also applied to the same data set. Experiment results show that the proposed algorithm is more advantageous than the three baseline algorithms according to the measurement of purity and entropy.
出处 《数据采集与处理》 CSCD 北大核心 2016年第3期482-489,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61540053)资助项目 广西可信软件重点实验室基金(kxrj201503)资助项目
关键词 复杂网络 社区划分 潜在狄利克雷分配 局部模块度 Key words: complex network community partition latent Dirichlet allocation (LDA) topic model localmodularity
  • 相关文献

参考文献16

  • 1张梁梁,潘志松,李国鹏,胡谷雨.基于小波去噪的有向加权社团发现研究[J].数据采集与处理,2014,29(5):833-839. 被引量:3
  • 2Barnes E R. An algorithm for partitioning the nodes of a graph [J]. Siam Journal on Algebraic & Discrete Methods, 1982, 3(4) :541-550.
  • 3Kernighan B W, Lin S. An efficient heuristic procedure fur partitioning graphs [J]. Bell System Technical Journal, 1970, 49 (2) : 291-307.
  • 4Girvan M, Newman E J. Community structure in social and biological networks [J]. Proceedings of the National Academy of Sciences of USA,2002,99(12): 7821-7826.
  • 5Newman M E. Fast algorithm for detecting community structure in networks [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 69(6): 066133.
  • 6Duch J, Arenas A. Community detection in complex networks using extremal optimization [J] . Phys Rev E Stat Nonlin Soft Matter Phya, 2005, 72(2) : 986-1023.
  • 7Roger G, Amaral L A N. Functional cartography of complex metabolic networks [J]. Nature, 2005, 433(7028):895-900.
  • 8Simon P, Franeesco B, Matthijs V L. Description-driven community detection [J]. ACM Transation on Intelligent Systems Technology, 2014, 5(2):1-28.
  • 9Barbieri N, Bonchi F, Manco G. Cascade-based community detection[C]//Proceedings of the 6th ACM International Con- ference on Web Search and Data Mining (WSDM'13). New York: ACM, 2013:33-42.
  • 10云颖,袁方,刘宇,王传豹.基于网页内容相似度和链接关系的社区发现及动态添加[J].郑州大学学报(理学版),2011,43(1):75-79. 被引量:2

二级参考文献62

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2Newman M E J,Grivan M. Finding and evaluating community structure in networks[J]. Physical Review, 2004 (E69) : 026113-1-026113-15.
  • 3Guimera R, Sales-Pardo M, Amaral L A N. Modularity from fluctuation in random graphs and complex networks[J]. Physical Review, 2004(E70) :025101-1-025101-4.
  • 4Berger-Wolf T Y, Saia J. A framework for analysis of dynamic social networks[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, 2006:523-528.
  • 5Tantipathananandh C,Berger-Wolf T Y. A framework for community identification in dynamic social networks[C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, 2007: 717-726.
  • 6Lin Yuru, Chi Yun, Zhu Shenghuo, et al. Analyzing communities and their evolutions in dynamic social networks[C]// Proceedings of the Int Conference on Transaction on Knowledge Discovery from Data. New York, 2009: 8:1-31.
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual we search engine[C]//The 7th Int'l WWW Conference. Brishane, 1999 : 107-117.
  • 8李翠.基于链接分析的web社区发现研究与应用[D].西安:西安理工大学,2007.
  • 9WENG Jian-shu, LIM E P, JIANG .ling, et al. Twitter rank: finding topic-sensitive in fluential twitterers[C]//Proc of the 3rd ACM International Conference on Web Search and Data Mining. New York: ACM, 2010.
  • 10BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部