期刊文献+

基于多新息Kalman滤波的TLD改进算法 被引量:3

Improved TLD Algorithm Based on Multi-innovation Kalman Filter
下载PDF
导出
摘要 针对跟踪检测学习(tracking learning detection,TLD)跟踪算法中目标被遮挡后跟踪失败以及跟踪精度不高的问题,本文提出基于多新息Klaman滤波的TLD改进算法,在原始TLD跟踪算法的基础上加入了多新息Klaman滤波算法。改进算法对跟踪目标建模,将TLD跟踪算法的结果作为系统当前状态的观测值,结合多新息Kalman滤波算法的预测值,最优化检测结果,作为当前帧中目标的跟踪位置。通过实验对原始TLD和改进后的TLD算法进行比较,通过在标准测试序列的实验验证,加入多新息Kalman滤波的TLD改进算法与原始TLD算法相比,其跟踪误差更小,而且实现了对跟踪目标被遮挡后的位置预测。 Abstract: To solve the problems of tracking failure caused by blocked target and low tracking precision in the tracking learning detection (TLD) algorithm, an improved TLD algorithm based on multi-innovation Kalman filter is proposed. The improved algorithm models the target before tracking, uses the results of TLD tracking algorithm as the current observations and then combines with the predicted values of the multi-innovation Kalman filter to optimize the tracking results. The experiments show that the improved algorithm of TLD has higher precision than the original TLD algorithm, and it is able to predict the posi- tion of the target when the target is occluded.
出处 《数据采集与处理》 CSCD 北大核心 2016年第3期592-598,共7页 Journal of Data Acquisition and Processing
基金 山西省青年基金(201002106-13)资助项目 山西省自然科学基金(2015011045)资助项目
关键词 目标跟踪 跟踪检测学习 多新息kalman滤波 target tracking tracking learning detection (TLD) multi-innovation Kalman filter
  • 相关文献

参考文献5

二级参考文献75

  • 1丁锋,陈通文,萧德云.非均匀周期采样多率系统的一种辨识方法[J].电子学报,2004,32(9):1414-1420. 被引量:33
  • 2吕美茜,程存虎,张正中,文晓辉.机载视频测试技术在空中加油试飞中的应用[J].测控技术,2005,24(10):53-56. 被引量:6
  • 3[9]MOUSTAFA K A F. Identification of stochastic time-varying systems[J]. IEE Proc, Part D, 1983,130(4): 137 - 142.
  • 4[10]GOODWIN G C, SIN K S. Adaptive filtering perdiction and control[J]. Englewood Cliffs, New Jersey: Prentice-hall,Inc., 1984.
  • 5Mo S, Chen X, Zhao J, et al. A two-stage method for identification of dual-rate systems with fast input and very slow output[J]. Industrial and Engineering Chemistry Research, 2008, 48(4): 1980-1988.
  • 6Ding F, Liu P X, Yang H Z. Parameter identification and intersample output estimation for dual-rate systems[J]. IEEE Trans on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38(4): 966-975.
  • 7Liu X, Marquez H J, Lin Y. Input-to-state stabilization for nonlinear dual-rate sampled-data systems via approximate discrete-time model[J]. Automatica, 2008, 44(12): 3157- 3161.
  • 8Stoica E Sandgren N. Spectral analysis of irregularly- sampled data: Paralleling the regularly-sampled data approaches[J]. Digital Signal Processing, 2006, 16(6): 712-734.
  • 9Raghavan H, Tangirala A, Gopaluni R B, et al. Identification of chemical process with irregular output sampling[J]. Control Engineering Practice, 2006, 14(5): 467-480.
  • 10Li W, Han Z, Shah S L. Subspace identification for FDI in systems with non-uniformly sampled multirate data[J]. Automatica, 2006, 42(4): 619-627.

共引文献99

同被引文献27

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部