期刊文献+

FI-内射复形 被引量:1

FI-injective complexes
下载PDF
导出
摘要 复形范畴中的同调理论是由Cartan和Eilenberg于20世纪50年代引入的,它受到众多学者的关注。由于模的复形可以看成模的推广,因而在复形范畴中也可以开展同调理论的研究。作为FI-内射模的推广,本文定义了FI-内射复形,给出了FI-内射复形与其各个层次上的模之间的联系,利用复形的覆盖刻画了FI-内射复形,最后讨论了FI-内射复形与内射复形之间的关系。 In the 1950 s, Homology theory in the category of complexes was introduced by Cartan and Eilenberg. It has drawn wide attentions from more and more scholars. Since complexes of R-modules can be seen as a generalization of modules,relative homology theory of the category of modules can be generalized to that of complexes. As a generalization of FI-injective module, FI-injective complex is defined. The connection between FI-injective complex and modules of degree n is obtained, for all n in Z. FI-injective complex is discussed through covers. Furthemore, the relation between FP-injective complex and injective complex is given.
作者 辛大伟 田雪
出处 《阜阳师范学院学报(自然科学版)》 2016年第2期1-3,共3页 Journal of Fuyang Normal University(Natural Science)
基金 国家自然科学基金项目(11201063) 安徽自然科学基金项目(1508085MA12) 安徽省高校省级自然科学研究项目(2014KJ004) 阜阳师范学院科学研究项目(2013FSKJ13)资助
关键词 FI-内射模 FI-内射复形 FP-内射复形 FI-injective module FI-injective complex FP-injective complex
  • 相关文献

参考文献10

  • 1Mao L X, Ding N Q. FI-injective and FI-flat modules [J]. Journal of Algebra,2007,309( 1 ) : 367-385.
  • 2Enochs E E, Jenda O G. Relative homological algebra ( Ⅰ ) [M]. Berlin: De Gruyter Expositions in Mathe- matics 30, 2000:105-125.
  • 3Enochs E E, Jenda O G. Relative homological algebra ( Ⅱ ) [M]. Berlin: De Gruyter Expositions in Mathe- matics 54, 2011 - 1-36.
  • 4Garcia R R. Covers and envelopes in the category of complexes of modules[M]. London: Chapman&Hall/ CRC, 1999: 1-90.
  • 5Wang Z P, Liu Z K. FP-injective complexes and FP-in- jective dimension of complexes[J]. Journal of the Aus- tralian Mathematical Society, 2007,91 (2) : 163 - 187.
  • 6Yang X Y, Liu Z K. FP-injective complexes[J]. Com- munications in Algebra, 2010,38(1): 131-142.
  • 7Zeng Y D, Chen J L. Envelopes and Covers by Mod- ules of Finite FP-Injective Dimensions[J]. Communi- cations in Algebra, 2010,38(10) : 3851-3867.
  • 8Wang Z P, Liu Z K. Complexes of gorenstein flat mod- ules and gorenstein cotorsion modules[J]. Communi- cations in Algebra, 2010,38(10) :3752-3766.
  • 9Xin D W, Chen J L, Zhang X X. Completely W-re- solved complexes[J]. Communications in Algebra, 2013,41 (3): 1094-1106.
  • 10Xin D W, Chen J L, Zhang X X. On gorenstein FP-in- jective and gorenstein fiat complexes[J]. Communica- tions in Algebra,2013, 41 (4) : 1247-1267.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部