期刊文献+

Special automorphisms on Shimura curves and non-triviality of Heegner points 被引量:1

Special automorphisms on Shimura curves and non-triviality of Heegner points
原文传递
导出
摘要 We define the notion of special automorphisms on Shimura curves. Using this notion, for a wild class of elliptic curves defined over Q, we get rank one quadratic twists by discriminants having any prescribed number of prime factors. Finally, as an application, we obtain some new results on Birch and Swinnerton-Dyer(BSD) conjecture for the rank one quadratic twists of the elliptic curve X_0(49). We define the notion of special automorphisms on Shimura curves. Using this notion, for a wild class of elliptic curves defined over Q, we get rank one quadratic twists by discriminants having any prescribed number of prime factors. Finally, as an application, we obtain some new results on Birch and Swinnerton-Dyer(BSD) conjecture for the rank one quadratic twists of the elliptic curve X_0(49).
出处 《Science China Mathematics》 SCIE CSCD 2016年第7期1307-1326,共20页 中国科学:数学(英文版)
关键词 Shimura curves Heegner points BSD conjecture 椭圆曲线 自同构 r点 BSD 定义
  • 相关文献

参考文献17

  • 1Kolyvagain V. Finiteness of E(Q) and III(E, Q) for a subclass of Weil curves (in Russian). Izv Akad Nauk SSSR Ser Mat, 1988, 52:522-540.
  • 2Kolyvagain V. Euler system. In: The Grothendieck Festschrift II. Progress in Mathematics, vol. 87. Boston: Birkhauser, 1990, 435-483.
  • 3Nekov~~ J. The Euler system method for CM points on Shimura curves. In: L-functions and Galois Representations. LMS Lecture Note Series, vol. 320. Cambridge: Cambridge University Press, 2007, 471 547.
  • 4Perrin-Riou B. Points de Heegner et d6riv6es de fonctions Lp-adiques. Invent Math, 1987, 89:455-510.
  • 5Prasad D. Some applications of seesaw duality to braching laws. Math Ann, 1996, 304:1-20.
  • 6Tian Y. Congruent numbers with many prime factors. Proc Nat Acad Sci India Sect A, 2012, 109:21256 21258.
  • 7Tian Y. Congruent numbers and Heegner points. Cambridge J Math, 2014, 2:117 161.
  • 8Tian Y, Yuan X, Zhang S. Genus periods, genus points, and congruent number problem. ArXiv:1411.4728, 2014.
  • 9Birch B. Elliptic curves and modular functions. Symp Math, 1970, 4:27-32.
  • 10Birch B, Swinnerton-Dyer P. Notes on elliptic curves (11). J Reine Angew Math~ 1965~ 218:79 108.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部