摘要
为提高发动机故障诊断的正确率与精确度,提出遗传算法和BP神经网络相结合的故障诊断模型。将发动机部分尾气信息和传感器数据作为BP神经网络诊断模型的输入变量,利用遗传算法的全局搜索能力优化BP神经网络的初始权值和阈值,采用优化后的BP神经网络建立发动机故障的诊断模型。实验结果表明该诊断模型可提高发动机故障诊断的正确率。
To improve the correctness and accuracy of the engine fault diagnosis, a fault diagnosis modelbased on BP neural network combining genetic algorithm was proposed. With the engine emissions in-formation and sensors data as the input variables of BP neural network diagnosis model, BP neural net-work,s initial weights and thresholds were optimized using the global search ability of genetic algo-rithm. A model of engine fault diagnosis was built by the optimized BP neural network. The simulationresults show that the proposed method can improve the accuracy of engine fault diagnosis.
出处
《湖北汽车工业学院学报》
2016年第2期18-22,27,共6页
Journal of Hubei University Of Automotive Technology
基金
黑龙江省自然科学基金项目(E2015053)
中央高校基本科研业务费专项资金资助(DL13CB14)
关键词
BP神经网络
遗传算法
故障诊断
BP neural network
genetic algorithm
fault diagnosis