期刊文献+

Ternary supramolecular quantum-dot network flocculation for selective lectin detection

Ternary supramolecular quantum-dot network flocculation for selective lectin detection
原文传递
导出
摘要 We present a versatile, tuneable, and selective nanoparficle-based lectin biosensor, based on flocculation of ternary supramolecular nanoparticle networks (NPN), formed through the sequential binding of three building blocks. The three building blocks are ^-cyclodextrin-capped CdTe quantum dots, tetraethylene glycol-tethered mannose-adamantane cross-linkers (ADTEGMan), and the tetravalent lectin Concanavalin A (ConA). The working principle of this selective sensor lies in the dual orthogonal molecular interactions of the linker, uniting adamantane-^-cyclodextrin and mannose-lectin interaction motifs, respectively. Only when the lectin is present, sequential binding takes place, leading to in situ self-organization of the sensor through the formation of ternary supramolecular networks. Monitoring the loss of fluorescence signal of the quantum dots in solution, caused by controlled network formation and consecutive flocculation and sedimentation, leads to selective, qualitative, and quantitative lectin detection. Fluorescent sedimented networks can be observed by the naked eye or under UV illumination for a lectin concentration of up to 10 8 M. Quantitative detection is possible at 100 min with a lower detection limit of approximately 5 × 10 ^-8 M. We present a versatile, tuneable, and selective nanoparficle-based lectin biosensor, based on flocculation of ternary supramolecular nanoparticle networks (NPN), formed through the sequential binding of three building blocks. The three building blocks are ^-cyclodextrin-capped CdTe quantum dots, tetraethylene glycol-tethered mannose-adamantane cross-linkers (ADTEGMan), and the tetravalent lectin Concanavalin A (ConA). The working principle of this selective sensor lies in the dual orthogonal molecular interactions of the linker, uniting adamantane-^-cyclodextrin and mannose-lectin interaction motifs, respectively. Only when the lectin is present, sequential binding takes place, leading to in situ self-organization of the sensor through the formation of ternary supramolecular networks. Monitoring the loss of fluorescence signal of the quantum dots in solution, caused by controlled network formation and consecutive flocculation and sedimentation, leads to selective, qualitative, and quantitative lectin detection. Fluorescent sedimented networks can be observed by the naked eye or under UV illumination for a lectin concentration of up to 10 8 M. Quantitative detection is possible at 100 min with a lower detection limit of approximately 5 × 10 ^-8 M.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1904-1912,共9页 纳米研究(英文版)
关键词 SUPRAMOLECULAR CYCLODEXTRIN quantum dot sensor LECTIN FLOCCULATION supramolecular,cyclodextrin,quantum dot,sensor,lectin,flocculation
  • 相关文献

参考文献4

二级参考文献236

  • 1Wiedmann, T.; Sadhukha, T.; Hammer, B.; Panyam, J. Image-guided drug delivery in lung cancer. Drug Deliv. Transl. Res. 2012, 2, 31-44.
  • 2Mitsudomi, T.; Suda, K.; Yatabe, Y. Surgery for NSCLC in the era of personalized medicine. Nat. Rev. Clin. Oncol. 2013, 10, 235-244.
  • 3Devarakonda, S.; Morgensztem, D.; Govindan, R. Molecularly targeted therapies in locally advanced non-small-cell lung cancer. Clin. Lung Cancer 2013, 14, 461-412.
  • 4Govindan, R.; Bogart, J.; Vokes, E. E. Locally advanced non-small cell lung cancer: The past, present, and future. J. Thorac. Oncol. 2008, 3, 917-928.
  • 5Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275-284.
  • 6Sukumar, U.; Bhushan, B.; Dubey, P.; Matai, I.; Sachdev, A.; Packirisamy, G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett. 2013,3,1-17.
  • 7Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Delivery Rev. 2010, 62, 1052-1063.
  • 8Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016-2018.
  • 9Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434-1436.
  • 10Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部