期刊文献+

Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2-x/g-C3N4 heterojunctions: Enhance photoelectro- chemical and photocatalytic activity under visible LED light irradiation 被引量:5

Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2-x/g-C3N4 heterojunctions: Enhance photoelectro- chemical and photocatalytic activity under visible LED light irradiation
原文传递
导出
摘要 Novel SnO2-x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2 nanoparticles and exfoliated g-CBN4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2_x nanoparticles. The ultraviolet-visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-CgN4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2-x exhibited the highest photocurrent density of 0.0468 mA.cm-2, which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min^-1 for the heterojunction containing 27.4 wt.% SnO2-x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2x content and the compact structure of the junction between the SnO2-x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes. Novel SnO2-x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2 nanoparticles and exfoliated g-CBN4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2_x nanoparticles. The ultraviolet-visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-CgN4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2-x exhibited the highest photocurrent density of 0.0468 mA.cm-2, which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min^-1 for the heterojunction containing 27.4 wt.% SnO2-x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2x content and the compact structure of the junction between the SnO2-x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1969-1982,共14页 纳米研究(英文版)
基金 This work was supported by the Key Project of Natural Science Foundation of Shandong Province (No. ZR2013EMZ001), the Science and Technology Development Plan Project of Shandong Province (No. 2014GSF117015), the National Basic Research Program of China (No. 2013CB632401) and the National Natural Science Foundation of China (No. 51402145). This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE).
关键词 reduced SnO2x-x g-C3N4 heterojunctions photoelectrochemical light-emitting diodesource reduced SnO2x-x,g-C3N4,heterojunctions,photoelectrochemical,light-emitting diodesource
  • 相关文献

参考文献52

  • 1Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229-251.
  • 2Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.
  • 3Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397-10401.
  • 4Ohno, T.; Murakami, N.; Koyanagi, T.; Yang, Y. Photo- catalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J. CO2 Utilization 2014, 6, 17-25.
  • 5Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449 -16465.
  • 6Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452-2456.
  • 7Sridharan, K.; Jang, E.; Park, T. J. Novel visible light active graphitic C3Na-TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142-143, 718-728.
  • 8Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386-393.
  • 9Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic- inorganic composite photocatalyst ofg-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 2010, 39, 1488-1491.
  • 10Zang, Y. P.; Li, L. P.; Li, X. G.; Lin, R.; Li, G. S. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277286.

同被引文献14

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部