期刊文献+

基于卡尔曼滤波的电动汽车电池SOC估算方法研究 被引量:2

State of Charge Estimation of EV Power Batteries Based on EKF Method
下载PDF
导出
摘要 荷电状态SOC(State of Charge)是描述电动汽车动力电池状态的关键参数,对其进行估计,可以防止电池过充过放、有助于充分发挥电池中的能量、延长电池的使用寿命,是实现电池高效管理的关键技术之一。论文用卡尔曼滤波法对其进行估计,克服了安时法确定SOC初值难和存在累计误差的问题,易于工程实现,具有很好的实用价值。 Battery SOC estimation is an important part of the battery management system in electric vehicles. Analysis of SOC helps for better management of charge and discharge of batteries, makes use of the battery charge, and extend the life of batteries. SOC is estimated by EKF in this text. It is shown that the EKF method gains a higher steady state accuracy, and stronger anti-disturbing capability than Ah method.
出处 《机电产品开发与创新》 2016年第3期94-97,共4页 Development & Innovation of Machinery & Electrical Products
关键词 电动汽车 电池 荷电状态 卡尔曼滤波 electric vehicles(EV) battery state of charge(SOC) EKF
  • 相关文献

参考文献12

  • 1廖晓军,何莉萍,钟志华,周红丽,高学峰.电池管理系统国内外现状及其未来发展趋势[J].汽车工程,2006,28(10):961-964. 被引量:73
  • 2华周发,李静.电动汽车动力电池SOC估算方法综述[J].电源技术,2013,37(9):1686-1689. 被引量:42
  • 3下文伟.牛华荣.电动汽车技术基础[M].北京:机械工业出版社.2010.
  • 4W. X. Shen,K. T. Chau,C. C. Chan,et al.Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles [J].IEEE TRANS- ACTIONS ON VEHICULAR TECHNOLOGY, 2005,5.
  • 5林成涛,李腾,田光宇,陈全世.电动汽车用锂离子动力电池的寿命试验[J].电池,2010,40(1):23-26. 被引量:30
  • 6蒋春林.用内阻法预测阀控铅酸蓄电池故障[J].电力机车与城轨车辆,2004,27(5):51-52. 被引量:2
  • 7K. S. Ng,C. S. Moo,Y. P. Chen,and Y. C. Hsieh. Enhanced coulomb counting method for estimating state-of-charge and state- of-health of lithium-ion batteries[J].Appl. Energy ,2009,9.
  • 8I.-S. Kim. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode ob~erver[J].IEEE Trans. Pow- er Electron, 2010,4.
  • 9Jonghoon Kim,and B. H. Cho. State-of-charge estimation and state-of-health prediction of a Li-Ion degraded battery based on an EKF combined with a per-unit system [J].IEEE Trans. Power Elec- tron ,2011,9.
  • 10D. V. Do,C. Forgez,K. E. K. Benkara,and G. Friedrich. Impedance observer for a Li-Ion battery using Kalman filter[J].IEEE Trans. Veh. Technol,2009,8.

二级参考文献36

共引文献142

同被引文献33

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部