期刊文献+

用于目标辐射特性测量的W波段辐射计 被引量:2

W-band radiometer for target radiometric characterization
下载PDF
导出
摘要 针对双通道噪声相加型辐射计存在的视频信号处理电路复杂、系统稳定观测时间缺乏定量分析等问题,结合目标辐射特性测量需求,改进了一种测量目标辐射特性的W波段辐射计。该辐射计采用基于直接数字采样的视频信号处理方法,在降低视频信号处理电路复杂度的同时,增加了系统的灵活性。结合短周期定标技术与Allan方差分析方法,建立了目标亮温测量方程并推导了系统的理论灵敏度,在实现接收机稳定性评估的基础上确定了系统稳定观测时间。实验结果表明,设计的辐射计在积分时间为1s时灵敏度为0.3K,系统稳定观测时间可达40s,在0°-70°天顶角范围内对天空观测亮温与理论计算差值小于2.6K,系统整体性能指标优于双通道型噪声相加型辐射计。 In view of the requirement for target radiometric characterization and the problems of the dual-channel noise-adding radiometer like the complicated video signal processing circuits,and the lack of quantitative analysis for the stable observation time,an improved W-band radiometer is proposed for radiometric characterization.A video signal processing approach based on the direct digital acquisition is employed to reduce the complexity and strengthen the flexibility of the system.The object brightness temperature measurement equation is established and the system theoretical sensitivity is derived by combining the short periodic calibration technique and Allan variance analysis.Also the stable observation time is determined by the stability evaluation of the system.The experimental results show that the sensitivity of a designed radiometer is 0.3Kwith an integration time of 1s,the available stable observation time is able to reach to 40 sand the difference between the measurement and theoretical calculation of the sky brightness temperature is less than 2.6K within a zenith angle range of 0°-70°.The overall performances of the proposed system are superior to that of the dual-channel noise-adding radiometer.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第7期1502-1507,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61301213 61501234) 江苏省自然科学基金(SBK20130768)资助课题
关键词 辐射特性测量 辐射计 ALLAN方差 灵敏度 radiometric characterization radiometer Allan variance sensitivity
  • 相关文献

参考文献15

  • 1年丰,杨于杰,王伟,黄培康.微波毫米波辐射计宽带亮温定标系统研究[J].系统工程与电子技术,2011,33(4):750-754. 被引量:2
  • 2Xiao Z L, Hu T Y, Xu J Z, et al. Millimetre-wave radiometric imaging for concealed contraband detection on personnel[J]. IET Image Processing, 2011,5(5) :375 - 381.
  • 3Yu W, Chen X, Wu L. Segmentation of concealed objects in passive millimeter-mare images based on the Gaussian mixture model[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(4) :400 - 421.
  • 4Uzunkol M, Gurbuz O D, Goluck F, et al. A 0.32 THz SiGe 4 X 4 imaging array using high-efficiency on-chip antennas[J]. IEEE Journal of Solid-State Circuits, 2013, 48(9) :2056 - 2066.
  • 5Peichl M, Dill S, Rudolf D. SUMIRAD: a low cost fast millimeter- wave radiometric imaging system[C]///Proc, of SPIE Passive and Active Millimeter-Wave Imaging XVI, 2013:87150H-1 - 27150H 8.
  • 6Yeom S, Lee D S, Jang Y, et al. Real-time concealed-object de- tection and recognition with passive millimeter wave imaging[J]. Optics Ecrpress, 2012, 20(9) :9371 - 9381.
  • 7Ulaby F T, Moore R K, Fung A K. Microwave remote sensing- active and passive, vol. I: microzcave remote sensing fundamentals and radiometry[M]. Norwood MA: Artech House, 1981.
  • 8Alimenti F, Bonafoni S, Leone S, et al. A low-cost microwave radiometer for the detection of fire in forest environments[J].IEEE Trans. on Geoscience and Remote Sensing, 2008, 46(9) : 2632 - 2643.
  • 9Lynch J J, Nagele R G. Flicker noise effects in noise adding radiome ters [J]. IEEE Trans. on Microwave Theory and Techniques, 2011,59(1) :196 - 205.
  • 10Peng S S, Wu L, Ying X H, et al. A receiver in a millimeter wave radiometer {or atmosphere remote sensing[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30 (3) : 259 - 269.

二级参考文献17

  • 1潘顺康,吕善伟,冯克明,王伟.渐变微波吸收体散射截面计算[J].系统工程与电子技术,2006,28(10):1502-1505. 被引量:5
  • 2Cheng C Y, Wang Q, Xu D Z, et al. Design and emissivity meterage of 3mm microwave blackbody[C] ff Proc. of 5th International Conference on Microwave and Millimeter Wave Technology, 2007 :317 - 320.
  • 3Racette P, Wang J, Evans P, et al. A calibration experiment using the millimeter-wave imaging radiometer at the UK Mete-orological office calibration facility[C]// Geoscience and Remote Sensing Symposium, 1995,1 : 809 - 811.
  • 4Fetzer E, McMillin L M, Tobin D, et al. AIRS/AMSU/ HSB validation[J]. IEEE Trans. on Geoscience and Remote Sensing, 2003,41(2) :418 - 431.
  • 5Jackson D M, Gasiewski A J. Electromagnetic and thermal ana- lyses of radiometer calibration targets[C]// IEEE International Geoscience and Remote Sensing Symposium, 2000 : 569 - 576.
  • 6Nian F, Wang W, Huang P K. The systematic optimization designs for the microwave wide band blackbody calibration tar- get's electromagnetic and thermal characteristics[C]// XXIX General Assembly International Union of Radio Science, 2008, AP1.2:215.
  • 7Cox A E, Janezic M D. Preliminary studies of electromagnetic properties of microwave absorbing materials used in calibration targets[C]// IEEE International Geoscience and Remote Sens- ing Symposium Digest, 2006 : 732 - 736.
  • 8Dicke R H, Beringer R, Kyhl R L, et al. Atmospheric absorp- tion measurements with a microwave radiometer[J]. PhysicsReview, 1946,70 : 340 - 348.
  • 9Saunders R W, Hewison T J, Stringer S J. The radiometric characterization of AMSU-B[J]. IEEE Trans. on Microwave Theory and Techniques, 1995,43(4) :760 - 771.
  • 10Banfield L J. Proposed designed of the temperature control system for the variable temperature calibration target for the advanced microwave sounding unit B[C]// IEEE International Geoscience and Remote Sensing Symposium Digest, 1988 : 21 - 22.

共引文献1

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部