期刊文献+

基于粒子群算法的无人机舰机协同任务规划 被引量:9

Cooperative task planning for ship and UAVs based on particle swarm optimization algorithm
下载PDF
导出
摘要 无人机舰机协同任务规划技术是指充分利用无人机与舰艇的优势互补,协同进行作战任务规划的新技术,它是无人机任务规划问题的研究新热点,对于提升海军海上作战能力具有重要意义。针对该问题提出了相应的数学模型,并利用自适应的粒子群算法(self-adaptive particle swarm optimization,APSO)进行了求解,该算法能够自适应调整粒子群的惯性权重,更好的防止粒子群陷入局部最优。实验表明,在给定的实验样本中APSO相对于标准粒子群算法和带有压缩因子的粒子群算法能更有效的求解。 Cooperative task planning for ship and unmanned aerial vehicles (UAVs) (CPSU)is a new tech- nology which can make full use of the complementary advantages between ship and UAVs to make task planning cooperatively. It is a new focus on the UAVs' task planning problem, and it has great influence on improving the navy combat capability. A mathematical model of CPSU is built, and then a selbadaptive particle swarm op- timization (APSO) algorithm is introduced to solve it. The algorithm can self-adaptively change the inertia weight, which can avoid the PSO trapping into the local optimum better. The experiment shows that the APSO algorithm solves the problem more effectively than the standard PSO and the PSO with the constrict factor.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第7期1583-1588,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(71472058 71401048) 教育部人文社科项目(13YJC630051) 安徽省自然科学基金项目(1508085MG140)资助课题
关键词 任务规划 舰机协同 粒子群算法 自适应 task planning cooperative use of ships and unmanned aerial vehicles (UAVs) particle swarm optimization (PSO) self-adaptive
  • 相关文献

参考文献15

  • 1Darra H, Fuller E, Munasinghe T, et al. Using genetic algo- rithms for tasking teams of raven UAVS[J]. Journal of Intelli- gent g-Robotic Systems, 2013, 70(1/4, SI): 361- 371.
  • 2Gan S K, Sukkarieh S. Multi UAV target search using explicit decentralized gradient-based negotiation[ C] // Proc. of the IEEE International Conference on Robotics and Automation, 2011: 751 - 756.
  • 3Shima T, Rasmussen S, Gross D. Assigning micro UAVs to task tours in an urban terrain[J]. IEEE Trans. on Control Sys terns Technology, 2007, 15(4) : 601 - 612.
  • 4Pei X H, Jia S D, Zhu H Y. Targets assignment for multi- UCAV cooperative using a game theory approach[C]//Proc, of the 2nd International Conference on Computer Science and Net work Technology, 2012 .- 793 - 797.
  • 5林来兴.一种观测我国海岸线和近海的小卫星编队飞行方案[J].航天器工程,2013,22(1):10-14. 被引量:2
  • 6Bai G Q, Xing L, Chen Y W. Scheduling multi-platforms collab orative disasters monitoring based on eoevolution algorithm[J]. Research Journal of Chemistry and Environment, 2012, 16(2) : 43 - 50.
  • 7Aghaeeyan A, Abdollahi F, Talebi H A. Robust cooperative control in the presence ofobstacles[C]//Proc, of the 21st Irani- an Conference on Electrical Engineering, 2013 : 1 - 6.
  • 8DUAN HaiBin,ZHANG YunPeng,LIU SenQi.Multiple UAVs/UGVs heterogeneous coordinated technique based on Receding Horizon Control (RHC) and velocity vector control[J].Science China(Technological Sciences),2011,54(4):869-876. 被引量:15
  • 9Aghaeeyan A, Abdollahi F, Talebi H A. UAV-UGVs coopera tion: with a moving center based trajectory[J]. Robotics and Au tonomous Systems, 2015, 63:1 - 9.
  • 10Ramirez F F, Benitez D S, Portas E B, et al. Coordinated sea rescue system based on unmanned air vehicles and surface ves sels[C]//Proc, of the IEEE Spain OCEANS, 2011 : 1 - 10.

二级参考文献47

  • 1DUAN HaiBin & LIU SenQi National Key Laboratory of Science and Technology on Holistic Flight Control,School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China.Unmanned air/ground vehicles heterogeneous cooperative techniques:Current status and prospects[J].Science China(Technological Sciences),2010,53(5):1349-1355. 被引量:18
  • 2徐毅,罗君.无人机——未来战场的主力武器[J].电子科学技术评论,2005(5):1-6. 被引量:4
  • 3潘全科,王文宏,朱剑英.解决无等待流水车间调度问题的离散粒子群优化算法[J].计算机集成制造系统,2007,13(6):1127-1130. 被引量:18
  • 4叶媛嫒.多UCAV协同任务规划方法研究[D].长沙:国防科学技术大学,2005.
  • 5Rasmussen S, Chandler P R, Mitchell J W, et al. Optimal vs. heuristic assignment of cooperative autonomous unmanned air vehicles[C]//AIAA Guidance, Navigation, and Control Conference, 2003 : 679 - 708.
  • 6Curz J B, Jr C, Chen G. Particle swarm optimization for resource allocation in UAV cooperative control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004:16 - 19.
  • 7Fan Chunxia, Wan Youhong. An adaptive simple particle swarm optimization algorithm[C]//Control and Decision Conference, 2008 : 3067 - 3072.
  • 8Pan Q K,Tasgetiren M F,Liang Y C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem with makespan criterion[C]// Proc. of the Int Workshop on UK Planning and Scheduling Special Interest Group, 2005:31 -41.
  • 9Pan Q K, Tasgetiren M F, Liang Y C. Minimizing total earliness and tardiness penalties with a common due date on a single-machine using a discrete particle swarm optimization algorithm[J]. Lecture Notes in Computer Science, 2006,4150 : 460 - 467.
  • 10Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory [C]// Proceedings of the 6th International Symposium on Micro Machine and Hunan Science, Nagoya, Japan. USA: IEEE Robotics and Automation Society, 1995: 39-43.

共引文献114

同被引文献110

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部