期刊文献+

生物统计的研究进展与挑战 被引量:6

Recent Advances and Future Challenges for Biostatistics
下载PDF
导出
摘要 生物统计学是以解决生物学、医学、公共卫生学、农学等领域科学问题为目标的应用型学科,近年来在精准医疗的背景下得以快速发展。另一方面,生物统计研究面对的数据存在海量化、复杂化和异质化的大数据特征,对理论与应用研究者都提出了新的挑战。本文围绕生物统计研究中的流行病学研究、临床试验设计、生存数据分析和基因数据分析展开讨论,在介绍基本思路的基础上对最新挑战及前沿发展方向进行展望。 Biostatistics is the application of statistics to the field of biological science,medical science,public health,and agriculture. The beginning of the era of precision medicine has witnessed the rapid advancement in the field of biostatistics. Yet the growing dimension,complexity,and heterogeneity in "big data"have brought about a lot of new challenges to biostatistics researchers in theory and application alike. The article focuses on the recent development in four different areas including epidemiology, clinical trials, survival analysis, and genomic data analysis, discusses the challenges with further development based on introducing the basic concepts.
出处 《统计研究》 CSSCI 北大核心 2016年第6期3-12,共10页 Statistical Research
基金 中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目“生物医学大数据的统计方法基础研究”(15XNI011)的阶段性成果
关键词 流行病学 试验设计 生存分析 基因数据分析 Epidemiology Clinical Trial Survival Analysis Gene Data Analysis
  • 相关文献

参考文献72

  • 1Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies [ J ]. Journal of the National Cancer Institute, 2004 ( 6 ) :434 - 442.
  • 2March D, Susser E. The eeo-in eeo-epidemiology[ J]. International Joornal of Epidemiology ,2006 ( 6 ) : 1379 - 1383.
  • 3Restif O. Evolutionary epidemiology 20 years on: challenges and prospects [ J ]. Infection, Genetics and Evolution, 2009 ( 1 ) : 108 - 123.
  • 4Osffeld R S, Giass G E, Keesing F. Spatial epidemiology: an emerging ( or re-emerging) discipline [ J]. Trends in Ecology & Evolution, 2005 (6) :328 - 336.
  • 5Austin P C. The performance of different propensity score methods for estimating marginal hazard ratios [ J ]. Statistics in Medicine, 2013(16) :2837 -2849.
  • 6Imai K, Ratkovie M. Covariate balancing propensity score [ J ]. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 2014( 1 ) :243 - 263.
  • 7Maeda I, Morita T, Yamaguchi T, et al. Effect of continuous deep sedation on survival in patients with advanced cancer (J-Proval) : a propensity score-weighted analysis of a prospective cohort study [ J ]. The Lancet Oncology, 2016( 1 ) : 115 - 122.
  • 8Szpiro A A, Paciorek C J. Measurement error in two-stage analyses, with application to air pollution epidemiology [ J ]. Environmetrics, 2013(8) :501 -517.
  • 9Szpiro A A, Sheppard L, Adar S D, et al. Estimating acute air pollution health effects from cohort study data [ J ]. Biometrics, 2014(1) :164 - 174.
  • 10Alexeeff S E, Carroll R J, Coull B. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures[J]. Biostatistics, 2015.

同被引文献25

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部