期刊文献+

一类具非线性源扩散方程的熄灭和非熄灭行为 被引量:1

Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source
下载PDF
导出
摘要 该文研究一类具非线性源的快扩散方程解的熄灭性质,借助积分模估计和上下解方法给出了解在有限时刻熄灭的充分条件,给出了解的衰退估计,并且给出了在某些参数条件下的数值模拟结果. In this paper, we investigate the extinction and nonextinction behavior of solutions for a class of reaction-diffusion equations. By using the integral model estimates and the method of sub-super solutions, we obtain some sufficient conditions for the solutions vanish in finite time. Furthermore, we also present numerical examples for the sake of illustration.
作者 周森 杨作东
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第3期531-542,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(11571093 11471164)资助~~
关键词 反应扩散方程 非线性源 熄灭 非熄灭 Reaction-diffusion equation Nonlinear source Extinction Non-extinction.
  • 相关文献

参考文献1

二级参考文献17

  • 1Berrimi S, Messaoudi S A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal TMA, 2006, 64:2314-2331.
  • 2Berrimi S. and Messaoudi S.A., Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electronic J Differ Eqns, 2004, 88:1-10.
  • 3Cavalcanti M M, Domingos Cavalcanti V N, Ferreira J. Existence and uniform decay of nonlinear vis- coelastic equation with strong damping. Math Method Appl Sci, 2001, 24:1043-1053.
  • 4Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping. Electronic J Differ Eqns, 2002, 44:1-14.
  • 5Cavalcauti M M, Domingos Cavalcanti V N, Prates Filho J S, Soriano J A. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ Integral Equ, 2001, 14(1): 85-116.
  • 6Cavalcanti M M, Oquendo H P. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim, 2003, 42(4): 1310-1324.
  • 7Furati K, Tatar N -e. Uniform boundedness and stability for a viscoelastic problem. Appl Math Comput, 2005, 167:1211-1220.
  • 8Hrusa W J. Global existence and asymptotic stability for a nonlinear hyperbolic Volterra equation with large initial data. SIAM J Math Anal, 1985, 16:110-134.
  • 9Medjden M, Tatar N -e. On the wave equation with a temporal nonlocal term. Dyn Syst Appl, 2007, 16: 665-672.
  • 10Medjden M, Tatar N -e. Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel. Appl Math Comput, 2005, 167:1221-1235.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部