期刊文献+

具Markov转换和脉冲扰动的捕食-食饵系统的动力学 被引量:1

Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching
下载PDF
导出
摘要 该文研究一个具有Markov转换和脉冲扰动的随机时滞捕食-食饵系统.首先确定系统存在唯一全局正解并给出系统解的均值上极限的估计;其次获得了系统解轨道长时间的渐近行为和系统的随机最终有界性;进而构造合适的Lyapunov函数并使用随机微分方程的比较定理,给出种群灭绝、平均非持续生存的充分条件;最后,给出简短的结论. In this paper, a stochastic delay predator-prey system with Markovian switching and impulsive perturbations is studied. We establish conditions for the existence of a global positive solution for the considered system. The superior limit of expectations for the solution of this system is estimated. Afterwards we obtain certain asymptotic results regarding longtime behavior of trajectories of the solution and prove stochastically ultimately boundedness of the system. Furthermore, by constructing a suitable Lyapunov function and using comparison theorem of stochastic differential equation, a set of sufficient conditions for extinction, non- persistence in the mean for every positive solution of the system are obtained. Finally, we give the conclusion.
作者 张树文
机构地区 集美大学理学院
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第3期569-583,共15页 Acta Mathematica Scientia
基金 国家自然科学基金(31272653 11301216) 福建省自然科学基金(2016J01667)资助~~
关键词 捕食-食饵模型 随机扰动 脉冲效应 灭绝 平均非持续生存 Predator-prey system Stochastic perturbations Impulsive effects Extinction Non-persistence in the mean.
  • 相关文献

参考文献2

二级参考文献9

  • 1胡迪鹤,胡晓予.ON MARKOV CHAINS IN SPACE-TIME RANDOM ENVIRONMENTS[J].Acta Mathematica Scientia,2009,29(1):1-10. 被引量:7
  • 2周少波,胡适耕.RAZUMIKHIN-TYPE THEOREMS OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS[J].软件工程师,2009(4). 被引量:8
  • 3Waltman, P.: A brief survey of persistence in dynamic systems, in Delay-differential equations and dynamical systems. Lecture Notes in Math., 1475, 31-40 (1991).
  • 4Hutson, V., Schmit, K.: Permanence and the dynamics of biological systems. Math, Biosci., 111, 1-71(1990).
  • 5Zhao, X. Q.: Uniform and periodic coexistence states in infinite-dimensional periodic semiflows with applications. Candian Applied Mathematics Quarterly, 3, 473-495 (1993).
  • 6Ruan, S. G., Zhao, X. Q.: Persistence and extinction in two species reactin-diffusion systems with delays.J. Differential Equations, 156, 71-92 (1999).
  • 7Ruan, S. G., Zhao, X. Q.: Persistence and extinction in two species reactin-diffusion systems with delays.J. Differential Equations, 156, 71-92 (1999).
  • 8Bainov, D., Simeonov, P.: Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 66, 1993.
  • 9Zhang, Y. M., Liu, M.: Attractivity for the periodic solution of a class impulsive differential equations.Journal of Shanxi University (Nat. Sci Ed.), 23, 107-109 (2000)..

共引文献4

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部