期刊文献+

含聚苯胺类锂离子电池复合电极材料研究进展

Review on Electrode Materials Blended with Polyaniline for Lithium Ion Batteries
原文传递
导出
摘要 聚苯胺是目前研究最为广泛的导电高分子材料之一,具有特殊的电学、光学性能,在电子工业、信息工程、国防工程等的应用开发进行了深入研究。聚苯胺经掺杂后可形成P型和N型导电态,这种掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,而掺杂度受pH值和电位等因素的影响,且电化学活性同比传统锂电极材料在充放电过程中具有更优异的可逆性能,因此有关在设计聚苯胺参与锂电池电极复合材料的研究也越来越受到重视。本文综述了不同结构聚苯胺锂离子电池复合材料的制备方法,并着重介绍了聚苯胺基复合材料锂离子电池等领域研究的电化学性能,最后展望了聚苯胺基复合材料的应用前景。 Nowadays, Polyaniline has become one of the most widely studied conductive polymer materials. With special electrical and optical properties, Polyaniline after doped by proton acid can be applied to the field of the electronics industry, information engineering, national defense engineering, et al. Doped polyaniline can be formed P and N conducting state. With the doping mechanism, Polyaniline is completely reversible during the course of the doping and dedoping. The electrochemical activity is decided by the doping level that is affected by some factors such as pH value and the potential. Polyaniline has more excellent reversible than the traditional electrode materials of lithium ion batteries in the process of charging and discharging. Therefore, the research on the design of polyaniline regarded as an important hole of electrode materials of lithium ion batteries has been paid more and more attention. In this paper, the preparation methods of the different structure of polyaniline are mentioned in details, which are blended with Electrode materials for lithium ion batteries. And the electrochemical performances of the electrode composites added polyaniline are emphatically introduced. As a result, the electrochemical properties can be obviously improved by blended with polyaniline. Finally, the application prospect of polyaniline is predicted, which is used as the electrode materials for lithium ion batteries.
出处 《高分子通报》 CAS CSCD 北大核心 2016年第6期44-50,共7页 Polymer Bulletin
基金 国家自然基金面上项目(51372104) 江西省自然科学基金项目(20151BAB206018)
关键词 聚苯胺 锂离子电池 复合电极材料 电化学性能 Polyaniline Lithium ion batteries electrode Composites The electrochemical properties
  • 相关文献

参考文献53

  • 1Niu ZW, LiuJ, Lee A. ChemMater, 2007, 7(12):3729-3733.
  • 2朱嫦娥,任丽,王立新,安颢瑗.锂二次电池正极——聚苯胺/炭黑导电复合材料的制备与表征[J].高分子材料科学与工程,2005,21(6):217-220. 被引量:7
  • 3郭炳琨,李新海,杨松青.化学电源-电池原理及制造技术.长沙:中南大学出版社,2001,288-306.
  • 4WHG, YanXR, WuSJ, LuoZP, WeiSY, GuoZ H. JPhysChemC, 2012, 116(47).250-252.
  • 5Csaba J, Norma R T, Chanmanee W, Rajeshwar K. J Phys Chem C, 2012,116:19145.
  • 6Frau A F, Lane T J, Schlather A E, Jin Y P, Advincula R C. Ind Eng Chem Res, 2011, 50(9) :5532-5542.
  • 7Katoch A, Burkhart M, Hwang T, SangSK. ChemEngJ, 2012, 192:262-268.
  • 8SunL, ShiYC, HeZP, LiB, LiuJ R. SynthMetals, 2012, 162(24):2183-2187.
  • 9LiYZ, YuY, WuLZ, ZhiJ F. ApplSurfSoc, 2013, 273:135-143.
  • 10Ryu K S, Kim K M, Kang S G, Lee G J, Joo J, Changa S H. Synth Metals, 2000, 110: 213-217.

二级参考文献8

  • 1Cha J, Han J I, Choi Y. Biosensors and Bioelectronics, 2003, 18(10): 1241~1247.
  • 2Erdem E, Karaksla M, Sacak M. European Polymer Journal, 2004, 40(4): 785~791.
  • 3Martyak N M, McAndrem P, McCaskie J E. Progress in Organic Coatings, 2002, 45(1): 23~32.
  • 4Karami H, Mousavi M F, Shamsipur M. Journal of Power Sources, 2003, 117(1-2): 255~259.
  • 5Dalas E, Citoratos E, Sakkopoulos S. Journal of Power Sources, 2004, 128(2): 319~325.
  • 6Omastova M, Podhradska S, Prokes J. Polymer Degradation and Stability, 2003, 82(2): 251~243.
  • 7江明(JINGMing).高分子科学的近代论题(Latter-Day Thesis of Macromolecule Science)[M].上海: 复旦大学出版社(Shanghai: Fudan University Press),1998.212-230.
  • 8Macdiarmid A G. Synthetic Metals, 2001, 125(1): 11~22.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部