期刊文献+

自主水下航行器发展概述(英文) 被引量:24

Overview on the Development of Autonomous Underwater Vehicles(AUVs)
下载PDF
导出
摘要 自主水下航行器(AUVs)因其应用于海洋勘探而逐渐成为一个有趣的研究对象。波浪滑翔机是一种行驶于波浪表面的无人滑行器(SUV),它借助海洋能来推动自己,这对于典型的AUVs所采用的电机供能以及昂贵的锚链系统浮标供能来说,是一种技术上的重大跨越。该文讨论了最有效率的AUVs类型。第一部分为每一种类型的发展历程,第二部分为它们各自的技术特点。此外,波浪滑翔机作为应用于海洋部门的一种新型水下机器人,文中简要地给出它的过去,现在以及未来的发展概述。研究波浪滑翔机的意义在于证明它的效率以及实用性,进而取代诸多的AUVs来实现各种实际应用。而研究结果也表明波浪滑翔机确实可以应用于众多领域。对于海洋检测而言,相比于其他AUVs,波浪滑翔机提供了更廉价,更经济,更环保的作业模式,同时也不需要缆绳、船舶等海上作业服务。 Autonomous underwater vehicles(AUVs) became an interesting research area because of their emerging applications in oceanographic survey. The wave glider is a surface unmanned vehicle(SUV) which uses the power of the ocean to propel itself: a technological leap from typical AUVs powered by motors and buoys with expensive mooring systems. In this paper, the most effective types of AUVs is discussed. The history of the development of each type is presented first and the technical aspects are also discussed. And the wave glider as a new type of underwater robotics used in marine sector will be briefly discussed to give a complete overview of the past, present and future of the AUVs development. The purpose of studying wave glider is to discuss the efficiency and functionality of it to replace many AUVs for a variety of applications. The results of study demonstrate that the wave glider is applicable in many fields of applications. Wave glider offers a cheaper, more economical and environmentally sound method of monitoring the seas compared to other AUVs and also has no need for ship time, mooring lines and at-sea servicing.
出处 《船舶力学》 EI CSCD 北大核心 2016年第6期768-787,共20页 Journal of Ship Mechanics
关键词 自主水下航行器(AUV) 水下滑行器 波浪滑翔机 autonomous underwater vehicle(AUVs) underwater gliders wave glider
  • 相关文献

参考文献50

  • 1Caccia M, Bono R, Bruzzone, Veruggio G. Unmanned underwater vehicles for scientific applications and robotics research The ROMEO project[R]. Marine Technology Society Journal, 2000, 34/2: 3-17.
  • 2Correia L, Steiger-Garcao A. An AUV architecture and world model[C]//5th International. Conf. on Advanced Robotics Pisa, Italy, 1991, 2: 1315-1320.
  • 3Hine R G, Hine D L, Rizzi J D, Kiesow K A F, Burcham R, Stutz W A. Wave Power[P]. Liquid Robotics Inc., assignee Patent 7371136, 2007.
  • 4Dive, Discover (2005). Dive and Discover: History of Oceanography[M/OL]. Expeditions to the Seafloor. Web. 24 Dec. 2015.
  • 5Data Buoy Types (2002)[R]. JCOMM in Situ Observing Platform Support Centre. Web. 24 Dec. 2015.
  • 6Bellingham J G, Goudey C A, Consi T R, Bales J W. A second generation survey AUV[J]. IEEE Symposium. Autonomous Underwater Vehicle Technology, Cambridge, 1994: 148-155.
  • 7AUV Laboratory at MIT Sea Grant (2012). History: AUV Laboratory at MIT Sea Grant[Z]. Web. 24 Dec. 2015.
  • 8Odyssey IV Robot Submarine by MIT I Geekie Gadgets (2008)[M/OL]. Latest Technology. Web. 24 Dec. 2015.
  • 9Liquid Robotics Fleet of Self-propelled, Solar-powered, Ocean- Going Robots Raises (2011)[M/OL]. Web. 24 Dec. 2015.
  • 10The Wave Glider Technology (2012). Ocean Robots Journey Across Pacific Ocean for New Scientific Discoveries[M/OL]. Web. 24 Dec. 2015.

同被引文献171

引证文献24

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部