期刊文献+

基于主成分分析和学习矢量量化的会话初始协议识别研究 被引量:1

Research on Session Initiation Protocol Identification Based on Principal Component Analysis and Learning Vector Quantization
下载PDF
导出
摘要 针对加密会话初始协议(SIP)识别困难以及相关研究工作较少,对入侵检测、网络流量监控等工作带来不便的问题,提出基于主成分分析(PCA)和学习矢量量化(LVQ)网络的SIP协议识别模型。通过对SIP协议的网络流特征进行PCA,提取出累计贡献率高于85%的相关流特征作为SIP协议识别过程中的主要特征,并进行LVQ网络训练,构建出完整的SIP协议识别模型。实验结果表明,PCA_LVQ模型对SIP协议的识别率均高于90%,通过PCA提取的SIP协议网络流属性区别于非SIP协议的属性,该模型对SIP协议的识别效果较好。 The encrypted Session Initiation Protocol(SIP) is difficult to identify and there is less related research,which makes the intrusion detection and the network traffic monitoring inconvenient.Aiming at these problems,this paper proposes a SIP identification model based on Principal Component Analysis(PCA) and Learning Vector Quantization(LVQ) network.It extracts the feature of relevant flow characteristics,the cumulative contribution rate of which is higher than 85%,as the main characteristic during the identification of SIP by adopting PCA on the network traffic properties of the SIP.Then it trains the LVQ network training and builds a complete SIP identification model.Results show that the PCA_LVQ model can identify the SIP with a recognition rate higher than 90%,indicating that the property of SIP extracted by PCA network flow is different from non-SIP.The model has good effect on identifying SIP.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第6期125-130,共6页 Computer Engineering
基金 国家自然科学基金资助项目"分组密码代数旁路攻击技术研究"(61173191)
关键词 会话初始协议 主成分分析 学习矢量量化 特征值 加密协议 流特征 Session Initiation Protocol(SIP) Principal Component Analysis(PCA) Learning Vector Quantization(LVQ) eigen value encrypted protocol flow characteristic
  • 相关文献

参考文献14

  • 1姚玉坤,刘合武.软交换技术在VoIP中的应用分析[J].数据通信,2006(1):33-36. 被引量:10
  • 2张文华,刘忠信,陈增强,袁著祉.基于SIP协议的3G网络安全认证机制[J].计算机工程与应用,2004,40(13):163-166. 被引量:4
  • 3郑天明,王韬,郭世泽,李华,赵新杰.改进的空间协议识别算法[J].通信学报,2012,33(5):183-190. 被引量:6
  • 4Early J P,Brodley C E,Rosenberg C.Behavioral Authentication of Server Flows[C]//Proceedings of the19th Annual Computer Security Applications Conference.Washington D.C.,USA:IEEE Press,2003:46-55.
  • 5Sen S,Spatscheck O,Wang Dongmei.Accurate,Scalable in Network Identification of P2P Traffic Using Application Signatures[C]//Proceedings of the 13th International Conference on World Wide Web.New York,USA:ACM Press,2004:512-521.
  • 6Amita S,Aruna T.Network Traffic Classification Using Semi-supervised Approach[C]//Proceedings of the 2nd International Conference on Machine Learning and Computing.Washington D.C.,USA:IEEE Press,2010:345-349.
  • 7陈亮,龚俭,徐选.基于特征串的应用层协议识别[J].计算机工程与应用,2006,42(24):16-19. 被引量:43
  • 8杨哲,李领治,纪其进,朱艳琴.基于最短划分距离的网络流量决策树分类方法[J].通信学报,2012,33(3):90-102. 被引量:12
  • 9Charles V W,Fabian M,Gerald M.On Inferring Application Protocol Behaviors in Encrypted Network Traffic[J].Journal of Machine Learning Research,2006,7(12):2745-2769.
  • 10Sun Guanglu,Xue Yibo,Dong Yingfei,et al.A Novel Hybrid Method for Effectively Classifying Encrypted Traffic[C]//Proceedings of Global Telecommunications Conference.Washington D.C.,USA:IEEE Press,2010:1-5.

二级参考文献113

共引文献104

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部