期刊文献+

基于自适应增强的图像二值描述子 被引量:4

Binary Descriptor for Images Based on Adaboost
下载PDF
导出
摘要 针对经典的尺度不变特征变换和快速鲁棒特征描述子存在空间占用和参数自适应学习能力较差的问题,提出一种基于自适应增强的图像二值描述子,采用优化学习的思路获取图像描述子。使用学习方法得到图像描述子的通用框架,在基于阈值响应的相似度函数上,给出一种改进的相似度函数,通过该函数可快速学习图像的描述子及二值描述子。运用图像的梯度特征构建弱学习器,通过自适应增强方法寻找弱学习器的最优权重和非线性特征响应,得到区分性强且鲁棒性好的局部特征描述子。图像匹配实验结果表明,该图像二值描述子占用存储空间少、匹配性能好。 Classic descriptors such as Scale Invariant Feature Transform(SIFT) and Speeded up Robust Feature(SURF) have some drawbacks in storage capacity and parameter adaptive learning,so a binary descriptor for images based on Adaboost is proposed,which can obtain image descriptor from optimal learning.A general framework using the learning method to obtain the image descriptor is developed,and a modified similarity function is presented on the basis of similarity function based on threshold response,by which the image descriptors and binary descriptors can be quickly learned.Weak learners are constructed by using the gradient features of the image,and the optimal weights and non-linear characteristic response of weak learners are computed by using the Adaboost method.The resulting local feature descriptor is discriminative and robust.Experimental results on image matching show that the proposed binary descriptor occupies less storage space and has good matching performance.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第6期230-234,240,共6页 Computer Engineering
基金 广东省教育厅2014年特色创新基金资助项目(2014GXJK181)
关键词 描述子 图像描述 自适应增强 图像匹配 尺度不变特征变换 快速鲁棒特征 局部特征 弱学习器 descriptor image description Adaboost image matching Scale Invariant Feature Transform(SIFT) Speeded up Robust Feature(SURF) local feature weak learner
  • 相关文献

参考文献21

  • 1施智平,胡宏,李清勇,史忠植,段禅伦.一种快速有效的图像纹理谱描述子[J].计算机辅助设计与图形学学报,2004,16(12):1703-1707. 被引量:13
  • 2章志勇,杨柏林.球面调和描述子在图像形状匹配中的应用[J].自动化学报,2007,33(7):683-687. 被引量:4
  • 3施智平,胡宏,李清勇,史忠植,段禅伦.基于纹理谱描述子的图像检索[J].软件学报,2005,16(6):1039-1045. 被引量:44
  • 4Lowe D G.Distinctive Image Features from Scaleinvariant Keypoints[J].International Journal of Computer Vision,2004,6(2):91-110.
  • 5Zhang Qi,Chen Yurong,Zhang Yimin,et al.SIFT Implementation and Optimization for Multi-core Systems[C]//Proceedings of IEEE International Symposium on Parallel and Distributed Processing.Washington D.C.,USA:IEEE Press,2008:1-8.
  • 6Capone A,Pizziniaco L,Filippini I,et al.A Si FT:An Efficient Method for Trajectory Based Forwarding[C]//Proceedings of International Symposium on Wireless Communication Systems.Washington D.C.,USA:IEEE Press,2005:135-139.
  • 7Bay H,Tuytelaars T,Gool L V.SURF:Speeded up Robust Features[J].Computer Vision&Image Understanding,2006,110(3):404-417.
  • 8Luo Juan,Gwun O.A Comparison of SIFT,PCA-SIFT and SURF[J].International Journal of Image Processing,2009,3(4):143-152.
  • 9Bay H,Ess A,Tuytelaars T,et al.Speeded-up Robust Features(SURF)[J].Computer Vision&Image Understanding,2008,110(3):346-359.
  • 10Brown M,Winder S,Hua Gang.Discriminative Learning of Local Image Descriptors[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2010,33(1):43-57.

二级参考文献24

  • 1燕继坤,郑辉,王艳,曾立君.基于可信度的投票法[J].计算机学报,2005,28(8):1308-1313. 被引量:8
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3Manjunath B S, Ohm Jens-Rainer, et al. Color and texture descriptors[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(6): 703~715
  • 4Swain M, Ballard D. Color indexing[J]. International Journal of Computer Vision, 1991, 7(1): 11~32
  • 5Mandal M K, Aboulnasr T. Fast wavelet histogram techniques for image indexing[J]. Computer Vision and Image Understanding, 1999, 75(1/2): 99~110
  • 6Castleman Kenneth R. Digital Image Processing[M]. Englewood Cloffs: Prentice Hall, 1996
  • 7Haralick R M, Shanmngam K, et al. Texture feature for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3(6): 768~780
  • 8Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837~842
  • 9He D C, Wang L. Texture features based on texture spectrum[J]. Pattern Recognition, 1991, 24(5): 391~399
  • 10Valiant L G. A theory of the learnable [J]. Communication of the ACM, 1984, 27(11): 1134-1142

共引文献103

同被引文献19

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部