期刊文献+

基于高阶条件随机场模型的改进型图像分割算法 被引量:4

Improved Image Segmentation Algorithm Based on High-order Conditional Random Field Model
下载PDF
导出
摘要 在图像分割中,将条件随机场(CRF)模型及其高阶模型广泛用作能量函数,后者以二阶CRF模型为基础,通过引入高阶势函数反映各分割块内像素标记的一致性,使分割的目标边缘更加精确,但能量最小化的计算效率不理想。针对该问题,提出一种基于鲁棒P^nPotts高阶CRF模型的改进型图像分割算法。根据给定的标记集合运行最大流/最小割算法得到局部最优解,再用局部最优解修改节点的标记,对未确定标记的节点运行α扩展算法,并在每次迭代过程中动态更新图的流和边的剩余容量,使得每次迭代的时间快速减少。实验结果表明,与α扩展算法相比,改进算法在保持原有分割效果的基础上,相同图像的能量最小化收敛速度比原算法快2倍~3倍。 In image segmentation,Conditional Random Field(CRF) model and its higher-order model are widely used as energy function.The latter is based on second-order model by introducing higher-order potential function to reflect consistency of pixel labels of each segment,so that the segmented object boundary is more accurate.But the computing efficiency of energy minimization is not ideal.Aiming at this problem,this paper presents an improved image segmentation algorithm based on robust PnPotts high-order CRF model,which computes local optimal solution by running max-flow/min-cut algorithm according to the set of labels.The local optimal solution is used to modify the label of nodes and the α expansion run for the remaining nodes.The flows and residual capacities of the side are dynamically updated in each iteration process,so the running time of each iteration rapidly decreases.Experimental results show that compared with the α expansion algorithm is run,the improved algorithm can not only maintain the original segmentation effect,but also achieve 2~3 times of speed-up in the time of energy minimization on the same image.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第6期241-246,共6页 Computer Engineering
基金 国家自然科学基金资助项目"物联网环境下无线多媒体传感器网络QoS保障机制研究"(61100215) 湘潭大学博士科研启动基金资助项目(kz08051)
关键词 高阶条件随机场模型 图像分割 能量最小化 最大流/最小割 局部最优解 α扩展算法 high-order Conditional Random Field(CRF) model image segmentation energy minimization max-flow/min-cut local optimal solution α expansion algorithm
  • 相关文献

参考文献19

  • 1Boykov Y,Veksler O,Zabih R.Fast Approximate Energy Minimization via Graph Cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):1222-1239.
  • 2Kolmogorov V,Zabin R.What Energy Functions Can Be Minimized via Graph Cuts?[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):147-159.
  • 3Kolmogorov V.Convergent Tree-reweighted Message Passing for Energy Minimization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(10):1568-1583.
  • 4Meltzer T,Yanover C,Weiss Y.Globally Optimal Solutions for Energy Minimization in Stereo Vision Using Reweighted Belief Propagation[C]//Proceedings of the 10th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2005:428-435.
  • 5Lafferty J,Mc Callum A,Pereira F C.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of the 18th International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2001:282-289.
  • 6Chen Shengyong,Tong Hanyang,Cattani C.Markov Models for Image Labeling[EB/OL].(2012-05-18).http://www.hindawi.com/journals/mpe/2012/814356/.
  • 7王明军,周俊,屠珺,刘成良.基于条件随机场的大范围地形感知框架[J].机器人,2010,32(3):326-333. 被引量:8
  • 8Zhong Ping,Wang Runsheng.Modeling and Classifying Hyperspectral Imagery by CRFs with Sparse Higher Order Potentials[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(2):688-705.
  • 9Tien V N,Nghia P,Trung T,et al.Higher Order Conditional Random Field for Multi-label Interactive Image Segmentation[C]//Proceedings of IEEE Interna-tional Conference on Research,Innovation and Vision for the Future.Washington D.C.,USA:IEEE Press,2012:1-4.
  • 10Wegner J D,Montoya-Zegarra J A,Schindler K.A Higher-order CRF Model for Road Network Extraction[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Portland,USA:IEEE Press,2013:1698-1705.

二级参考文献14

  • 1Ollis M, Huang W H, Happold M, et al. Image-based path planning for outdoor mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 2723-2728.
  • 2Dahlkamp H, Kaehler A, Stavens D, et al. Self-supervised monocular road detection in desert terrain[C]//Robotics: Science and Systems. 2006. http://www.roboticsproceedings.org/rss 02/p05.pdf.
  • 3Jackel L D, Krotkov E, Perschbacher M, et al. The DARPA LAGR program: Goals, challenges, methodology, and phase I results[J]. Journal of Field Robotics, 2006, 23(11/12): 945-973.
  • 4Happold M, Ollis M, Johnson N. Enhancing supervised terrain classification with predictive unsupervised learning[C]//Robotics: Science and Systems. 2006. http://www.roboticsproceedings.org/rss02/p06.pdf.
  • 5Bajracharya M, Howard A, Matthies L H, et al. Autonomous off-road navigation with end-to-end learning for the LAGR program[J]. Journal of Field Robotics, 2009, 26(1): 3-25.
  • 6Lookingbill A, Lieb D, Thrun S. Optical flow approaches for self-supervised learning in autonomous mobile robot navigation[M]//Autonomous Navigation in Dynamic Environments. Berlin, Germany: Springer, 2007: 29-44.
  • 7Hadsell R, Sermanet P, Ben J, et al. Learning long-range vision for autonomous off-road driving[J]. Journal of Field Robotics, 2009, 26(2): 120-144.
  • 8Procopio M J, Mulligan J, Grudic G. Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments[J]. Journal of Field Robotics, 2009, 26(2): 145-175.
  • 9Lafferty J D, McCallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]//The Eighteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001: 282-289.
  • 10Felzenszwalb P F, Huttenlocher D E Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2): 167-181.

共引文献7

同被引文献34

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部