期刊文献+

基于深度相机的自主虚拟化身情感交互技术 被引量:7

Autonomous Virtual Avatar Emotional Interaction Technology Based on Depth Camera
下载PDF
导出
摘要 人机情感交互是虚拟现实的研究热点之一,深度相机的普及使基于深度相机的人机交互技术得到广泛应用。将微软Kinect2.0作为交互设备,定义不同情感语义的姿态和手势,设计基于模板匹配的手势识别方法。以建立人机情感和谐为设计目标,提出虚拟角色情感交互方法,构造虚拟化身的认知结构和情绪交互规则,并在计算机上实现原型系统。实验结果显示,虚拟化身可以通过表情动画和头部运动响应用户的身体动作,表明该技术方案具有可行性。 Human-computer emotion interaction is one of the research highlights in the virtual reality.The research of human-computer interaction based on depth camera is valuable with the popularity of depth camera.Using Microsoft Kinect2.0 as the interactive device,this paper defines different emotional semantic postures and gestures,and designs the gesture recognition method based on template matching.In order to realize the harmonious human-computer emotion,it proposes the method to realize emotional interaction of virtual characters and constructs cognitive structure and emotional interaction rules for the virtual avatar.The prototype system is realized in computer.Experimental result shows that the virtual avatar can respond to user’s body movement through facial animation and head motion.It proves that the proposed technical solution is feasible.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第6期293-298,304,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61373068) 宁波市科技计划基金资助项目(2015A610128 2015C50053 2015D10011) 宁波大学科研基金资助项目(XYW15010)
关键词 虚拟化身 情感交互 人机交互 眼动模型 动态时间规整 virtual avatar emotional interaction human-computer interaction eye movement model Dynamic Time Warping(DTW)
  • 相关文献

参考文献13

  • 1Niewiadomski R,Hyniewska S J,Pelachaud C.Constraintbased Model for Synthesis of Multimodal Sequential Expressions of Emotions[J].IEEE Transactions on Affective Computing,2011,2(3):134-146.
  • 2Saberi M,Bernardet U,Dipaola S.An Architecture for Personality-based,Nonverbal Behavior in Affective Virtual Humanoid Character[J].Procedia Computer Science,2014,41:204-211.
  • 3Moussa M B,Magnenat-Thalmann N.Toward Socially Responsible Agents:Integrating Attachment and Learning in Emotional Decision-making[J].Computer Animation&Virtual Worlds,2013,24(3/4):327-334.
  • 4Durupinar F,Pelechano N,Allbeck J.The Impact of the OCEAN Personality Model on the Perception of Crowds[J].IEEE Computer Graphics and Applications,2011,31(3):22-31.
  • 5李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 6李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 7李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1240
  • 8徐光佑,陶霖密,邸慧军.人机交互中的体态语言理解[M].北京:电子工业出版社,2014.
  • 9Berndt D J,Clifford J.Using Dynamic Time Warping to Find Patterns in Time Series[C]//Proceedings of KDD’94.[S.l.]:AAAI Press,1994:359-370.
  • 10Reyes M,Domínguez G,Escalera S.Feature Weighting in Dynamic Time Warping for Gesture Recognition in Depth Data[C]//Proceedings of 2011 IEEE Inter-national Conference on Computer Vision Workshops.Washington D.C.,USA:IEEE Press,2011:1182-1188.

二级参考文献27

共引文献2143

同被引文献53

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部