期刊文献+

应用Alexa Fluor488与BHQ1双标记寡核苷酸荧光探针测量辐射吸收剂量的可行性研究

The feasibility study of radiation absorbed dose measurement using oligonucleotide dually labeled with Alexa Fluor 488 and BHQ1 probe
原文传递
导出
摘要 目的 研究荧光探针Alexa Fluor 488-DNA-BHQ1用于辐射吸收剂量测量的可行性。方法 在寡核苷酸的5'与3'端分别标记荧光分子Alexa Fluor 488与其特异性荧光抑制剂BHQ1,制备Alexa Fluor 488-DNA-BHQ1的DNA双标记荧光探针。用X射线照射其水溶液,检测照射后溶液的荧光强度。结果 浓度为0.5~1μmol/L时,该荧光探针对剂量0.1~30 Gy之间线性响应最好(R2=0.99)。在辐照后40~80 min检测探针,荧光强度基本不变。4℃条件下保存受照后的荧光探针的荧光稳定性较好。结论 荧光探针Alexa Fluor 488-DNA-BHQ1可以应用于0.1~30 Gy范围内辐射吸收剂量的测量。 Objective To study the feasibility of measuring radiation absorbed dose with the fluorescent probe Alexa Fluor 488-DNA-BHQ1. Methods An oligonucleotide dually labeled at its 5'-and 3'-end with fluorescent molecular Alexa Fluor 488 and specific fluorescence inhibitors BHQ1 was prepared. The Alexa Fluor 488-DNA-BHQ1 aqueous solution was exposed with X-ray and its fluorescence intensity was measured. Results When the concentration of Alexa Fluor 488-DNA-BHQ1 was between 0.5 and 1 μmol/L, the fluorescence intensity of its aqueous solution had excellent linear dose response from 0.1 to 30 Gy (R2=0.99) and it was stably maintained after 40-80 min of irradiation especially at 4℃. Conclusions In the dose range of 0.1-30 Gy, the Alexa Fluor 488-DNA-BHQ1 fluorescent probe can be used to measure radiation absorbed dose.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2016年第6期419-423,共5页 Chinese Journal of Radiological Medicine and Protection
关键词 荧光探针 ALEXA FLUOR 488 BHQ1 Fluorescent probe Alexa Fluor 488 BHQ1
  • 相关文献

参考文献9

  • 1Ebraheem S, Abdel-Fattah AA, Beshir WB, et al. Formyl violet cyanide liquid dosimetry system[ J]. Radiat Phys Chem, 2007, 76 ( 7 ) : 1218-1221. DOI: 10. 1016/j. radphyschem. 2006. 11.013.
  • 2Beshir WB, Eid S, Gafar SM, et al. Application of solutions of Rhodamine B in dosimet'[J]. Appl Radiat [sot, 2014, 89(6) : 13-17. DOI: 10. 1016/j. apradiso. 2013. 11. 030.
  • 3Stryer L. Fluorescence energy transfer as a spectroscopic ruler [J]. Annu Rev Biochem, 1978, 47:819-846. DOI: 10.1146/ annurev, hi. 47. 070 [ 78. 004131.
  • 4Morishima S, Suzuki F, Nishimune A, et al. Visualization and tissue distribution of CqL-adrenoceptor in human prostate by the fluoscently labeled ligand Alexa-488-silodosin [ J ]. J Urol, 2010, 183(2) :812-819. DOI: 10.1016/j.juro. 2009. 09. 078.
  • 5Almond PR, Svensson H. Ionizalion chamber dosimet for photon and electron beams. Theoretical considerations [ J ]. Acta Radiol Ther Phys Biol, 1977, 16 (2) : 177-186. DOI: 10. 3109/028418 67709134310.
  • 6Duch MA, Ginjaume M, Chakkor H, et al. Thermoluminescenee dosimet7 applied to in vivo dose measurements for total body irradiation techniques [ J ]. Radiother Oncol, 1998,47 ( 3 ) : 319- 324. DOI: 10. 1016/S0167-8140(98)00013-9.
  • 7Maryanski M J, Schulz RJ, Ibbott GS, et al. Magnetic resonance imaging of radiation dose distributions using a lolymer-gel dosimeter[J] Phys Med Biol, 1994,39(9):1437-1455. DOI: 10. 1088/0031-9155/39/9/010.
  • 8Yeung AT, Holloway BP, Adams PS, et al. Evaluation of dual- labeled fluorescent DNA probe purity versus performance in real- time PCR [ J ]. Bioteehniques, 2004, 36 ( 2 ) : 266-270, 272, 274-275.
  • 9马洪鸽,史盼影,林温文,张保国.应用羧基荧光素-寡核苷酸-羧基四甲基罗丹明荧光探针测量吸收剂量[J].辐射研究与辐射工艺学报,2015,33(5):15-19. 被引量:2

二级参考文献13

  • 1袁存光,祝优珍,田晶,等.现代仪器分析[M].北京:化学工业出版社,2012.
  • 2Benitez E M, Casado F J, Garcia-Pareja S, et al. Evaluation of a liquid ionization chamber for relative dosimetry in small and large fields of radiotherapy photon beams [J]. Radiation Measurements, 2013, 58: 79-86.
  • 3Marrazzo L, Pallotta S, Klosowski M, et al. Clinical tests of large area thermoluminescent detectors under radiotherapy beams [J]. Radiation Measurements, 2013, 51-52: 25-30.
  • 4Hue C, Dagois S, Derreumaux S, et al. Characterization and optimization of EBT2 radiochromic films dosimetry system for precise measurements of output factors in small fields used in radiotherapy [J]. Radiation Measurements, 2012, 47: 40-49.
  • 5Camicer A, Angellier G, Gerard A, et al. Development and validation of radiochromic film dosimetry and Mome Carlo simulation tools for acquisition of absolute, high-spatial resolution longitudinal dose distributions in ocular proton therapy [J]. Radiation Measurements, 2013, 59: 225-232.
  • 6Fricke H, Hart E J. Chemical dosimetry. In:Attix H,Roesch W. Radiation Dosimetry, Vol. II,Instrument [M]. London: Academe Press, 1969:167-232.
  • 7Gupta B L, Narayan G R. G(Fe3+)values in the FBX dosimeter [J]. Physics in Medicine and Biology, 1985, 30: 337-340.
  • 8Ebraheem S, Abdel-Fattah, Beshir W B, et al. Formyl violet cyanide liquid dosimetry system [J]. Radiation Physics and Chemistry, 2007, 76: 1218-1221.
  • 9Beshir W B, Eid S, Gafar S M, et al. Application of solutions of Rhodamine B in dosimetry [J]. Applied Radiation and Isotopes, 2014, 89: 13-17.
  • 10Stryer L, Hangland R P. Fluorescence energy transfer: a spectroscopic ruler [J]. PNAS, 1969, 58: 719-726.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部