期刊文献+

侵入式光纤照相法测量气泡尺寸分布 被引量:6

An Immerged Fibre-optic Photoimaging Method for Measurement of Bubble Size
原文传递
导出
摘要 基于光纤内窥镜技术构建了以光纤内窥镜、图像采集系统和照明系统组成的侵入式照相装置,测量了由微气泡发生器和两种不同孔径的膜管产生的气泡的尺寸分布,并与取样照相法进行了比较.结果表明,3种气泡生成装置产生的气泡直径在50~2000μm;对50~200μm气泡两种方法的测量结果相差不大,200~2000μm的微气泡取样照相法测量值比侵入式照相法高,可能是因为取样时大气泡易发生聚并和破碎.侵入式照相法能较准确测量较宽的气泡尺寸,适用于在线测量气液体系中分布较宽的气泡尺寸动态分布,也可用于其他测量方法及数值模拟方法的验证. An immerged photoimaging system was developed to measure bubble size distribution, which mainly consisted of a fibre-optic endoscope, an image acquisition system and a light source. Bubbles generated by a microbubble generator and two ceramic microporous tubes with different pore-sizes were measured using this system, and the results were compared with those by the conventional sampling photoimaging method. The bubble sizes generated by the three generators ranged from 50 to 2 000 μm. The difference between the two methods was not obvious when the bubble diameter was smaller than 200 μm. However, it became significant when the bubble diameter was larger than 200 μm. This is probably because smaller bubbles are relatively more stable, and bigger bubbles are easy to coalesce, leading to measurement errors in the sampling course. The results suggest that this new method is capable of measuring a wide range of bubble sizes reliably, and can be used for in-situ measurement of bubble size in gas-liquid systems, verification of other methods and numerical simulation.
出处 《过程工程学报》 CAS CSCD 北大核心 2016年第3期361-366,共6页 The Chinese Journal of Process Engineering
基金 国家重大科研仪器研制基金资助项目(编号:21427814) 国家自然科学基金资助项目(编号:21276004 91434126) 国家重点基础研究发展规划(973)基金资助项目(编号:2013CB632601)
关键词 气泡尺寸分布 光纤内窥镜 在线测量 取样法 微气泡发生器 bubble size distribution fibre-optic endoscope in-situ measurement sampling method microbubble generator
  • 相关文献

参考文献19

  • 1张炎,黄为民.气泡大小对反应器内氧传递系数的影响[J].应用化工,2005,34(12):734-736. 被引量:20
  • 2Sokolichin A, Eigenberger G, Lapin A. Simulation of Buoyancy Driven Bubbly Flow: Established Simplifications and Open Questions [J]. AIChE J., 2004, 50(1): 24-45.
  • 3Parmar R, Majumder K S. Microbubble Generation and Microbubble-aided Transport Process Intensification--A State-of-the-art Report [J]. Chem. Eng. Process.: Process Intensification, 2013, 64: 79-97.
  • 4Terasaka K, Hirabayashi A, Nishino T, et al. Development of Microbubble Aerator for Waste Water Treatment Using Aerobic Activated Sludge [J]. Chem. Eng. Sci., 2011, 66(14): 3172-3179.
  • 5孙科霞,陈学俊,张鸣远,杨健.应用双头电导探针技术测量气液两相泡状流局部参数[J].计量学报,1999,20(4):297-303. 被引量:17
  • 6Wang T F, Wang J F, Yang W G et al. Bubble Behavior in Gas-Liquid-Solid Three-phase Circulating Fuidized Beds [J]. Chem. Eng. J., 2001, 84(3): 397-404.
  • 7Zhang K, Qi N N, Jin J Q, et al. Gas Holdup and Bubble Dynamics in a Three-phase Internal Loop Reactor with External Slurry Circulation [J]. Fuel, 2010, 89(7): 1361-1369.
  • 8朱姝,包雨云,陈雷,高正明,王东升.用电导探针测定气-液多层桨搅拌槽内气泡尺寸分布[J].高校化学工程学报,2011,25(6):977-984. 被引量:10
  • 9Pohorecki R, Moniuk W, Bielski P, et al. Modelling of the Coalescence/Redispersion Processes in Bubble Columns [J]. Chem. Eng. Sci., 2001, 56(21/22): 6157-6164.
  • 10Prince M J, Blanch H. Bubble Coalescence and Break-up in Air-sparged Bubble Columns [J]. AIChE J., 1990, 36(10): 1485-1499.

二级参考文献61

共引文献51

同被引文献87

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部