期刊文献+

面向数据演化的实体解析述评 被引量:2

A Review on Entity Resolution Based on Data Evolution
下载PDF
导出
摘要 分析数据演化下的基于相关性聚类的增量实体解析机制。针对增量实体解析过程展开分析和研究,首先探讨静态数据集中的实体解析、然后分析基于相关性聚类的解析机制,最后研究面向数据演化的实体解析过程。基于相关性聚类的增量实体解析技术能很好地运用于频繁更新的数据环境中。仅从聚类技术角度分析了面向数据演化的增量实体解析技术现状,未给出该技术的详细算法描述。有助于较全面系统地理解面向数据演化的实体解析过程及其内在的相关技术难点。 To analyse the mechanism of incremental entity resolution based on correlation clustering on data evolution. This paper analyses and studies the process of entity resolution, first discusses the entity resolution of static data collection, then analyses the mechanism of entity resolution based on Correlation Clustering, finally studies the process of entity evolution on data evolution. Incremental entity resolution based on Correlation Clustering can be used in frequently updated data environment. Only studies the technical situation of incremental entity evolution on data evolution in terms of clustering technique, not gives a detailed arithmetic statements of the technology. This paper will facilitate to give an comprehensive overview of the process of entity resolution on data evolution and its inherent technical difficulties.
作者 高广尚
出处 《情报学报》 CSSCI 北大核心 2016年第3期326-336,共11页 Journal of the China Society for Scientific and Technical Information
基金 广西文科中心"科学研究工程"项目"基于Web Services的异构平台数据集成模型研究"(项目编号:ZX2011044)的研究成果之一
关键词 数据演化 相关性聚类 增量实体解析 data evolution, correlation clustering, incremental entity resolution
  • 相关文献

参考文献31

  • 1Whang S E,Garcia-Molina H. Incremental entity resolution on rules and data [J]. The VLDB Journal,2014,23 (1) : 77 -102.
  • 2Getoor L, Machanavajjhala A. Entity resolution: theory, practice & open challenges [ J 3. Proc VLDB Endow, 2012,5 (12) :2018-2019.
  • 3M Ller H, Freytag J-C. Problems, Methods, and Challenges in Comprehensive Data Cleansing [ M]. Professoren des Inst. Ftlr Informatik. 2005.
  • 4Widyantoro D H, Ioerger T R, Yen J. An Incremental Approach to Building a Cluster Hierarchy [ M ]. Data Mining, 2002 ICDM 2003 Proceedings 2002 IEEE International Conference on. IEEE. 2002: 705-708.
  • 5Charikar M, Chekuri C, Feder T, et al. Incremental Clustering and Dynamic Information Retrieval [ M ~. Proceedings of the twenty-ninth annual ACM symposium on Theory of computing. ACM. 1997: 626-635.
  • 6Benjelloun O,Garcia-Molina H,Menestrina D,et al. Swoosh: a generic approach to entity resolution [ J]. The VLDB Journal, 2009,18 ( 1 ) : 255-276.
  • 7Pham D T, Dimov S S, Nguyen C. An incremental K- means algorithm [ J 1. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ,2004,218 (7) :783-795.
  • 8Mathieu C ,Sankur O,Schudy W. Online correlation clustering [J]. arXiv preprint arXiv: 10010920, 2010, 12 (3) : 21-36.
  • 9Gruenheid A,Dong X L, Srivastava D. Incremental Record Linkage [ M ]. Proceedings of the VLDB Endowment. Hangzhou, China; VLDB Endowment. 2014 : 20-12.
  • 10Can E. Incremental clustering for dynamic information processing [ J]. ACM Trans lnf Syst, 1993, 11 (2) : 143-164.

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部