期刊文献+

The structure,tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics 被引量:1

The structure,tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics
下载PDF
导出
摘要 Feather,as a by-product of the poultry industry,has long been treated as a solid waste,which causes environmental and economic problems.In this work,the hydrolyzed feather keratin(HFK)was extracted from the chicken feather using a cost-effective method of alkali-extraction and acid-precipitation by applying urea and sodium sulfide.The aim was development and characterization of the eco-friendly films based on the HFK with variable glycerol contents by a thermoplastic process.The thermal analysis showed that high temperature and high pressure improved the compatibility between the glycerol and the HFK molecules.Also it was shown that the addition of water is necessary in the hot-pressing process of films.The FT-IR analysis indicated that the formation of the new hydrogen bonds between HFK and glycerol.By increasing the glycerol content,the film tensile strength(σ_b)decreases from 10.5 MPa to 5.7 MPa and the solubility increases from 15.3% to 20.9%,while the elongation at break(εb)achieves the maximum value of 63.8% for the film with 35% glycerol.The swelling was just below 16.9%at 25 °C for 24 h,suggesting a good stability of the films in water.The water vapor permeability(WVP)varied between 3.02 × 10^(-10)g · m^(-2)· s^(-1)· Pa^(-1)and 4.11 × 10^(-10)g · m^(-2)· s^(-1)· Pa^(-1)for the films with 20% and40% glycerol,respectively.The HFK film was uniform,translucent and tough,which could be used in packaging and agricultural field. Feather, as a by-product of the poultry industry, has long been treated as a solid waste, which causes environ- mental and economic problems. In this work, the hydrolyzed feather keratin (HFK) was extracted from the chicken feather using a cost-effective method of alkali-extraction and acid-precipitation by applying urea and sodium sulfide. The aim was development and characterization of the eco-friendly films based on the HFK with variable glycerol contents by a thermoplastic process. The thermal analysis showed that high temperature and high pres- sure improved the compatibility between the glycerol and the HFI( molecules. Also it was shown that the addi- tion of water is necessary in the hot-pressing process of films, The FT-IR analysis indicated that the formation of the new hydrogen bonds between HFK and glycerol. By increasing the glycerol content, the film tensile strength (orb ) decreases from 10,5 MPa to 5.7 MPa and the solubility increases from 15.3% to 20.9%, while the elongation at break (εb) achieves the maximum value of 63,8% for the film with 35% glycerol. The swelling was just below 16.9% at 25 ℃ for 24 h, suggesting a good stability of the films in water. The water vapor permeability (WVP) varied between 3.02 x 10 ^10g. m 2. s-1 . pa-1 and 4.11 x 10-10g · m-2 · s-1 · Pa-1 for the films with 20%and 40% glycerol, respectively. The HFK film was uniform, translucent and tough, which could be used in packaging and agricultural field.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第3期415-420,共6页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(21176269,31371880,31401526) Higher School Science and Technology Innovation Project of Guangdong Province(2013KJCX0102) Science and Technology Plan Project of Guangdong Province(2013B010403029)
关键词 羽毛角蛋白 抗水 拉伸性能 生物塑料 水解 薄膜表征 甘油含量 结构 Feather keratin Biodegradable films Glycerol Hot-pressing Eco-ffiendly material
  • 相关文献

参考文献1

二级参考文献18

共引文献17

同被引文献17

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部