期刊文献+

应用高斯粒子滤波器的桥梁可靠性在线预测 被引量:9

On-line reliability prediction of bridges based on Gaussian particle filter
下载PDF
导出
摘要 为采用实时监测信息对桥梁结构构件的可靠性进行动态预测分析,应用健康监测系统的长期大量监测数据,建立了基于监测数据的动态模型(监测方程与状态方程),引入混合高斯粒子滤波器(MGPF),基于粒子滤波方法、贝叶斯方法以及动态模型,对监测信息状态变量的后验分布参数和监测值的一步向前预测分布参数进行预测分析.混合高斯粒子滤波方法通过重抽样技术,提高了动态模型的预测精度.基于实时监测信息可以不断修正抽样粒子的权重,进而解决粒子退化问题.最后基于实时预测的分布参数,结合一次二阶矩(FOSM)方法,对桥梁结构构件的可靠性进行在线动态预测分析. To dynamically predict reliability of bridge members with real-time monitored information, with the long- term mass monitored data of health monitoring system, the data-based dynamic model including monitoring equation and state equation was built, and then the mixed Gaussian particle filter(MGPF) was introduced. With partiele filter method, Bayesian method and dynamic model, the posteriori distribution parameters of state variable and one- step forward prediction distribution parameters of monitored data were predicted. Through resampling technique, with MGPF, the prediction precision of dynamic model can be increased. Based on the real-time monitoring data, the weights of resampled particles can be constantly updated. Therefore, the problem of particle degradation is solved. Finally based on the real-time predicted distribution parameters, with the first order second moment (FOSM) method, the on-line and dynamic reliability of bridge members is predicted.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第6期164-169,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金面上项目(51178150) 兰州大学中央高校基本科研业务费专项资金(lzujbky-2015-300 lzujbky-2015-301)
关键词 监测数据 动态模型 混合高斯粒子滤波器 贝叶斯方法 可靠性预测 monitored data dynamic model MGPF bayesian method reliability prediction
  • 相关文献

参考文献19

  • 1李惠,周文松,欧进萍,杨永顺.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006,39(2):46-52. 被引量:143
  • 2李爱群,缪长青,李兆霞,韩晓林,吴胜东,吉林,杨玉冬.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版),2003,33(5):544-548. 被引量:165
  • 3秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-42. 被引量:216
  • 4CHANA T H T, YUA L, TMA H Y. Fiber bragg grating sensors for structural health monitoring of Tsing Ma Bridge : background and experimental observation [J]. Engineering Structures, 2006, 28: 648-659.
  • 5HODGSON I. Personal discussion for the acquisition of the real data from the monitoring of the 1-39 Northbound Bridge over the Wisconsin River [R]. Bethlehem, Pennsylvania: Lehigh University, Department of Civil and EnvironmentalEngineering, 2007 : 18015-4729.
  • 6HU XY, WANG B, JI H. A Wireless sensor network-based structural health monitoring system for highway bridges [J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 28(3) : 193-209.
  • 7LIU M, FRANGOPOL D M, KIM S. Bridge safety evaluation based on monitored live load effects [J]. Journal of Bridge Engineering, 2009, 14(4): 257-269.
  • 8王瑀,荆国强,王波.桥梁健康监测系统在线结构分析及状态评估方法[J].桥梁建设,2014,44(1):25-30. 被引量:30
  • 9CHING J, MUTO M, BECK J L. Structural model updating and health monitoring with incomplete modal data using gibbs sampler [J 1. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(4): 242-257.
  • 10GARCIA-PALENCIA A J, SANTINI-BEL L. A two-step model updating algorithm for parameter identification of linear elastic damped structures [J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 28(7) : 509-521.

二级参考文献43

共引文献514

同被引文献50

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部