期刊文献+

氢同位素气体的新型动力学吸附模型 被引量:1

New dynamic model of gas adsorption for hydrogen isotopes
下载PDF
导出
摘要 将氢同位素气体在多孔吸附剂表面上的吸附脱附过程假设为简单对峙反应,提出了一个适用于体积法计算气体动力学吸附速率常数的数学模型。模型可考察温度与初始压力对动力学吸附速率的影响,且能较好地计算不同压力下氢气与氘气在微孔分子筛4A,5A,Y,10X与介孔分子筛CMK-3,SBA-15上的动力学吸附速率常数。当分子筛孔径为0.5 nm时动力学吸附选择性最大,可高达2.48。介孔分子筛的动力学吸附选择性则较小,表明大孔径的吸附剂不利于氢同位素气体混合物的分离。 The process of hydrogen isotope gas adsorption and desorption on porous adsorbents was assumed by a simple opposing reaction. The mathematical model for the volumetric method was proposed to calculate dynamic rate constants of gas adsorption. The effects of temperature and initial pressure to kinetic adsorption rates were investigated in the model. Moreover,the dynamic adsorption rate constants for hydrogen and deuterium on different adsorbents,including microporous molecular sieves 4A,5A,Y,10 X and the mesoporous molecular sieve CMK-3,SBA-15,were well calculated at different pressures. The largest dynamic adsorption selectivity was up to 2. 48 when the pore size of adsorbents was 0. 5 nm. However,the dynamic adsorption selectivity for mesoporous molecular sieves was small,which showed that the adsorbents with big pore size were not beneficial to separate the gas mixtures of hydrogen isotopes.
出处 《化学工程》 CAS CSCD 北大核心 2016年第6期32-35,共4页 Chemical Engineering(China)
基金 国家自然科学基金资助项目(21106051 21276101) 江苏省产学研项目(BY2015052-01) 淮安市产学研项目(HAC2015028) 淮安市工业支撑项目(HAG2013073)
关键词 氢同位素分离 分子筛 动力学 吸附 模型 hydrogen isotope separation molecular sieve dynamics adsorption model
  • 相关文献

参考文献12

  • 1BARRER R M. Intracrystalline diffusion [ M ]. USA : ACS, 1971 : 1-52.
  • 2SIRCAR S, HuFroN J R. Why does the linear driving force model for adsorption kinetics work? [ J ]. Adsorp- tion, 2000, 6(1): 137-147.
  • 3KARGER J, RUTHVEN D M. Diffusion in zeolites [M]. New York : Wiley Interscience, 1992 : 5-15.
  • 4CRANK J. Mathematics of diffusion [ M ]. London : Ox- ford University Press, 1956 : 72-95.
  • 5OKOYE I P, BENHAM M, THOMAS K M. Adsorption of gases and Vapors on carbon molecular sieves [ J ]. Langmuir, 1997, 13 (15) : 4054-4059.
  • 6RIED C R, THOMAS K M. Adsorption of gases on a car- bon Molecular sieve used for air separation: linear ad- sorptives as probes for kinetic selectivity [ J ]. Langmuir, 1999, 15(9) : 3206-3218.
  • 7SIRCAR S, HUFTON J R. Intraparticle adsorbate concen- tration profile for linear driving force model [ J ]. AIChE Journal, 2000, 46 (3) : 659-660.
  • 8ZHOU L, LIU X W, SUN Y, et al. Methane sorption in ordered mesoporous silica SBA-15 in the presence of wa- ter [ J]. Journal of Physical Chemistry B, 2005, 109 (48) : 22710-22714.
  • 9LIU X W, ZHOU L, LI J W, et al. Methane sorption on ordered mesoporous carbon in the presence of water [ J ]. Carbon, 2006, 44(8) : 1386-1392.
  • 10CHU X Z, CHENG Z P, XIANG X X, et al. Separation dynamics of hydrogen isotope gas in mesoporous and mi- croporous adsorbent beds at 77 K: SBA-15 and zeolites 5A, Y, 10X [J].International Journal of Hydrogen En- ergy, 2014, 39(9) : 4437-4446.

二级参考文献20

  • 1褚效中,周亚平,周理,寇登民.气相色谱法分析氢同位素气体[J].分析化学,2006,34(5):629-632. 被引量:13
  • 2Zhou L.. Renewable & Sustainable Energy Reviews[J] , 2005, 9(4) : 395-408.
  • 3Zhou L. , Zhou Y. P. , Sun Y.. Int. J. Hydrogen Energy[J], 2006, 31(2) : 259-264.
  • 4Strobel R. , Jorissen L. , Schliermann T. , et al.. J. Power Source[J] , 1999, 84(2) : 221-224.
  • 5Nijkamp M. G. , Raaymakers J. , van Dillen A. J. , et al.. Appl. Phys. A[J], 2001, 72(5) : 619-623.
  • 6Zhang D. H. , Kodama A. , Goto M. , et al.. Sep. Purif. Tcchonol.[J] , 2004, 35(2) : 105-112.
  • 7Sircar S., Golden T. C.. Sep. Sci. Technol.[J], 2000, 35(5):665-687.
  • 8Fukuda S. , Fujiwara H.. Sep. Sci. Technol. [J], 1999, 34( 11 ) : 2234-2242.
  • 9Zhou L. , Liu X. W. , Sun Y. , et al. J. Phys. Chem. B[J], 2005, 109(48) : 22710-22714.
  • 10Liu X. W. , Zhou L. , Li J. W. , et al. Carbon[J], 2006, 44(8) : 1386-1392.

共引文献2

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部