期刊文献+

氧化石墨烯核-壳杂化粒子/硅橡胶介电弹性体复合材料的制备与性能 被引量:14

Preparation and property of graphene oxide core-shell hybrid particles/silicone rubber dielectric elastomer composites
原文传递
导出
摘要 采用阳离子聚电解质聚二烯丙基二甲基氯化铵(PDDA)改性SiO_2,再通过静电自组装制备了SiO_2-PDDA-氧化石墨烯(GO)核-壳杂化粒子。采用溶液共混法将SiO_2-PDDA-GO引入到高温硫化硅橡胶(SR)中,制备了SiO_2-PDDA-GO/SR介电弹性体复合材料。结果表明:该方法能实现GO在SiO_2表面大面积的包覆,解决了GO容易自聚集的问题,且PDDA具有还原GO的作用,无需再对GO核-壳杂化粒子/SR复合材料进行原位热还原,简化了实验方案,节能环保。SiO_2-PDDA-GO填充量为60wt%时,在100 Hz频率下,SiO_2-PDDA-GO/SR介电弹性体复合材料的介电常数为21.53,是SR的11.6倍,介电损耗保持较低值,同时,复合材料的模量保持在较低水平。在电场强度为2.48kV/mm时,60wt%的SiO_2-PDDA-GO/SR介电弹性体复合材料横向电致形变在同一电场强度下与SR相比增加了15倍。 Cationic polyelectrolyte poly(diallyldimethylammonium chloride)(PDDA)was used to modify SiO2 ,and SiO2-PDDA-graphite oxide (GO)core-shell hybrid particles were prepared by electrostatic self-assembly.By intro-ducing SiO2-PDDA-GO into high-temperature vulcanization silicone rubber (SR)with solution blending method, SiO2-PDDA-GO/SR dielectric elastomer composites were prepared.Results show that this method can realize GO large surface coating on surface of SiO2 to prevent GO from self-agglomerating.GO core-shell hybrid particles/SR composites were obtained without in-situ thermal reduction because PDDA can reduce GO,made experimental scheme simple and environmental protection.The dielectric constant of SiO2-PDDA-GO/SR dielectric composite at 100 Hz increases to 21.53 with 60wt% SiO2-PDDA-GO which is 11.6 times than SR,and dielectric loss remains at low level.Meanwhile,modulus of composites remains low level.The lateral actuation strain of SiO2-PDDA-GO/SR dielectric elastomer composites with 60wt% SiO2-PDDA-GO at 2.48 kV/mm compared with pure SR increases 15 fold under same electric field intensity.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2016年第6期1192-1197,共6页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(51173007,51473011,51221002)
关键词 介电弹性体 氧化石墨烯 核-壳杂化粒子 硅橡胶 介电性能 电致形变 dielectric elastomer graphene oxide core-shell hybrid particles silicone rubber dielectric property actuation strain
  • 相关文献

参考文献16

  • 1CHEN L, CHAI S, LIU K, et al. Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 4398-4404.
  • 2GUO C X, LI C M. A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance[J]. Energy & Environmental Science, 2011, 4(11): 4504-4507.
  • 3FAN W, ZHANG C, TJIU W W, et al. Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches[J]. Journal of Materials Research, 2013, 28(4): 611-619.
  • 4TIAN M, MA Q, LI X L, et al. High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR[J]. Journal of Materials Chemistry A, 2014, 2(29): 11144-11154.
  • 5DONG X C, XING G C, CHAN-PARK M B, et al. The formation of a carbon nanotube-graphene oxide core-shell structure and its possible applications[J]. Carbon, 2011, 49(15): 5071-5078.
  • 6OH J, LEE J H, KOO J C, et al. Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres[J]. Journal of Materials Chemistry, 2010, 20(20): 9200-9204.
  • 7ZHANG S, XIONG P, YANG X, et al. Novel PEG functionalized graphene nanosheets: Enhancement of dispersibility and thermal stability[J]. Nanoscale, 2011, 3(5): 2169-2174.
  • 8NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society, 2006, 128(24): 7720-7721.
  • 9YANG H, SHAN C, LI F, et al. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid[J]. Chemical Communications, 2009, 45(26): 3880-3882.
  • 10SU Q, PANG S, ALIJANI V, et al. Composites of graphene with large aromatic molecules[J]. Advanced Materials, 2009, 21(31): 3191-3195.

同被引文献628

引证文献14

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部