期刊文献+

关联规则挖掘中的规则等价与精简 被引量:1

Rules Equivalent and Streamlining in Association Rules Mining
下载PDF
导出
摘要 作为推荐系统的一种模式,购物篮分析不同于基于用户的和基于项目的协同过滤推荐,而是根据商品在购物篮中的组合进行聚类分析,使用关联规则挖掘算法得到关联规则集并用于推荐商品。利用提升度公式可推导出两种关联规则的等价关系,对Apriori算法得到的关联规则集作冗余精简处理,实验表明精简率可达到60%以上。 Abstract: As a model of the recommender systems, market basket analysis is different from two recommender systems which are both user-based and item-based collaboration filtering. Its cluster analysis is based on the combination of goods in the shopping basket, and the association rules set are obtained by the association rule mining algorithm to recommend products. The formula of Lift can be used to deduce the two equivalence relationships of the association rules, and the redundancy association rule sets which are obtained through the Apriori algorithm can be streamlined. The relevant experiments show that streamlining rate can reach over 60%.
作者 易顺明
机构地区 沙洲职业工学院
出处 《沙洲职业工学院学报》 2016年第2期39-43,共5页 Journal of Shazhou Professional Institute of Technology
关键词 购物篮分析 APRIORI算法 规则集精简 market basket analysis the Apriori algorithm rule sets streamlining
  • 相关文献

参考文献4

  • 1易顺明.基于Python的推荐系统相似性分析和协同过滤[J].沙洲职业工学院学报,2015,18(1):3-7. 被引量:2
  • 2R Agrawal, Imielinski T, Swanmi A. Mining association rules between sets of items in large database [C] //Proceedings of the ACM SIGMOD Conference on Management of Data, ! 993:207-216.
  • 3玫瑰甜心.关联规则算法Apriori的学习与实现[EB/OL].(2011-07-18).[2016-04-02].http://blog.sina.com.cn/s/blog_591a31d20100rqw4.html.
  • 4Tom Brijs, Bart Goethals, Gilbert Swinnen. A data mining framework for optimal product selection in retail supermarket data: the generalized PROFSET model [C] //Proceedings of the ACM 7th International Conference on Knowledge Discovery & Data Mining, 2003.

二级参考文献2

  • 1D. Lemire,A. Maclachlan.Slope One Predictors for Online Rating-Based Collaborative Filtering. SIAM Data Mining . 2005
  • 2Beer reviews datasets. https://s3.amazonaws.com/demo-datasets .

共引文献1

同被引文献31

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部