期刊文献+

(μ+λ)EA算法关于最多叶子生成树问题的近似性能

Approximation performance of the(μ+λ) EA on the maximum leaf spanning tree problem
下载PDF
导出
摘要 为了更好地理解演化算法的运行机制及其在求解NP难问题上的性能,研究了基于种群的(μ+λ)演化算法((μ+λ)EA)在NP难的最多叶子生成树问题(MLST)上的近似性能,证明了对于最多叶子生成树问题,(μ+λ)EA算法从任意初始解出发,能够分别在期望多项式时间O((μ/λ)nm^2+μmlogn+n)和O((μ/λ)nm^4+μmlogn+n)内获得5和3近似比.并证明了如果选取λ>2μ,基于种群的(μ+λ)EA算法要优于基于单个个体的(1+1)EA算法. In order to gain more insight into the working mechanism of evolutionary algorithms and the performance on the NP hard problem, the approximation performance of the(μ +λ) EA on the maximum leaf spanning tree problem(MLST) has been studied. The results show that the(μ +λ) EA can obtain 5-approximation ratio and 3-approximation ratio on this problem in expected runtime O((μ/λ)nm^2+μmlogn+n) and O((μ/λ)nm^4+μmlogn+n), respectively. It is also proved that if we choose λ2 μ, the(μ+λ) EA can outperform the(1+1) EA with only one individual.
出处 《江西理工大学学报》 CAS 2016年第3期91-95,共5页 Journal of Jiangxi University of Science and Technology
基金 江西省自然科学基金资助项目(20151BAB217008)
关键词 演化算法 最多叶子生成树问题 近似性能 运行时间分析 evolutionary algorithms maximum leaf spanning tree problem approximation performance runtime analysis
  • 相关文献

参考文献25

  • 1Garey M R, Johnson D S. Computers and intractability: A guide to the theory of NPcompleteness[M]. San Francisco: W. H. Freeman Eds, 1979.
  • 2Fujie T. An exact algorithm for the maximum leaf spanning tree problem[J]. Computers & Operations Research, 2003, 30(13): 1931- 1944.
  • 3Kratsch S, Lehre P K, Neumann F, et al. Fixed parameter evolutionary algorithms and maximum Leaf spanning tree A matter of mutation[C]/ Proceedings of Parallel Problem Solving from Nature-(PPSN X1), volume 6238 of LNCS, Springer Berlin/Heidelberg, 201 I: 204-213.
  • 4Lu Hsueh-I, Ravi R. The power of local optimization: Approximation algorithms for maximum leaf spanning tree [C]// Proceedings of the Thirtieth Annual Allerton Conference on Communication, Control and Computing, 1992: 533-542.
  • 5Lu Hsueh-I, Ravi R. The power of local optimizations: Approximation algorithms for maximum leaf spanning tree (DRAFI')* [R]. Technical Report CS--96-05, Brown University, 1996.
  • 6Lu Hsueh-I, Ravi R. A near-linear-time approximation algorithm for maximum-leaf spanning tree[R]. Technical Report CS-96-06, Brown University, 1996.
  • 7Lu Hsueh-I, Ravi R. Approximating maximum leaf spanning trees in almost linear time[J]. Journal of Algorithms, 1998, 9(1):132-141.
  • 8Roberto Solis-Oba. 2-approximation algorithm for finding a spanning tree with maximum number of leaves [C]//In algorithms, ESA, volume 1461 of LNCS, Springer, Berlin, 1998: 441-452.
  • 9Bonsma P, Zickfeld F. A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs[C]//In Proceedings of the 8th Symposium on Latin American Theoretical Infonnatics (LATIN), vol. 4957 of LNCS, Springer, 2008: 531-543.
  • 10Kleitman D J, West D B. Spanning trees with many leaves [J].SIAM Journal on Discrete Mathematics, 1991, 4(1):99-106.

二级参考文献32

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部