期刊文献+

具有变号位势的哈密顿椭圆系统解的存在性

Existence of Solution for Hamiltonian Elliptic Systems with Signchanging Potential
下载PDF
导出
摘要 研究了非周期超二次的哈密顿椭圆系统解的存在性,利用变分方法中强不定泛函的临界点理论得到系统解的存在性. In this paper, we study the following nonperiodic superquadratic Hamiltonian elliptic systems, Assuming the potential [V]is nonperiodic and signchanging, existence of solution is obtained via a critical point theorem for strongly indefinite functions.
出处 《伊犁师范学院学报(自然科学版)》 2016年第2期8-15,85,共9页 Journal of Yili Normal University:Natural Science Edition
基金 国家自然科学基金项目(11226115)
关键词 哈密顿椭圆系统 临界点理论 约化方法 Hamiltonian elliptic system Critical point theorem Reduction
  • 相关文献

参考文献14

  • 1BENCI V, RABINOWITZ P. Critical point theorems for indefinite fimctionals[J]. Invent. Math., 1979(52) : 241-273.
  • 2BARTSCH T, DIN(; Y H. Deformation theorems on non-metrizable vector spaces and applications to critical theory [J]. Math. Nachr., 2006(279) : 1267-1288.
  • 3DE FIGUEIREDO D G, DING Y H. Strongly indefinite fimctionals and muhiple solutions of elliptic systems [J]. Trans. Amer. Math. Soe., 2003(355): 2973-2989.
  • 4BARTSCH T, DINGY H: Homoclinic solutions of an infinite-dimensional Hanfihonian system [J ]. Math. Z., 2002(240) : 289- 310.
  • 5DINGY H.Variational Methods for Strongly Indefinite Problems, Interdiscip[ J ]. Math. ,%i., World Scientite Pub1., 2007, 7.
  • 6AMBROSETFI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications [J]. J Fnnet And, 1973(14) : 349-381.
  • 7DINGY H, JEAN JEAN L. Homoclinic orbits for nonperiodic Hamiltonian system [J]. J. Differential Equations, 2007 (237) : 473-490.
  • 8WANG ,l, ZHANG H, XU J X, et al. Existence of infinitely many homlinie orbits for nonperiodie superquadratie Hamiltonian systems [J ]. NoNlinear Aiml., 2012 (75) : 4873-4883.
  • 9WANG J, XU J X, ZHANG F B. Existence of solutions for nonperiodie superquadratic Hamihonian elliptic systems [J ]. Nonlln- earAnal., 2010(72) : 1949-1960.
  • 10ALAMA A, LI YY. On "muhibump" bound states for certain semilinear elliptic equations [J]. Indiana Univ. Math., 1992 (41) : 983-1026.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部