期刊文献+

基于图像显著特征的非重叠视域行人再识别 被引量:3

Pedestrian re-identification based on salient features in non-overlapping areas
下载PDF
导出
摘要 显著特征是视觉识别中重要的鉴别信息,文中提出了两种显著特征来表征行人图像,一种基于快速鲁棒显著特征,另一种是基于主成分尺度不变显著特征。分别在图像的感兴趣区域中提取SURF(Speeded Up Robust Features)特征和PCA-SIFT(Principal Component Analysis-Scale Invariant Feature Transform)特征描述行人图像的纹理信息结合色彩直方图信息构成特征空间。通过待测图像与其余图像相应区域相似性估计来提取每幅图像中的特征显著性分布,得到图像的显著特征。最后在GRID(Underground Re-Identification Dataset)库上大量的实验验证了两种显著特征表示方法,并在行人再匹配中的获得了较SIFT(Scale Invariant Feature Transform)特征更高的识别效率和识别精度。 Salient feature in images always provides valuable information for pattern recognition, therefore two kinds of salient features to represent pedestrians are presented. A speeded up robust feature (SURF) and a principal component analysis-scale invariant feature transform (PCA-SIFT) feature are used to de- scribe texture of person image, respectively, then texture information and color histogram are used to con- struct the feature space. In the feature space, salient features are detected according to the difference be- tween person images. The effectiveness of salient features in people re-identification is validated on the widely used GRID dataset. Experimental results show that it outperforms other approaches in the accuracy and the efficiency using SURF and PCA-SIFT based on salient features.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2016年第3期106-111,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61402237) 江苏省社会安全图像与视频理解重点实验室基金(30920140122007)资助项目
关键词 特征表述 显著特征 行人再识别 feature descriptor salient features person re-identification
  • 相关文献

参考文献16

  • 1CAI Q, AGGARWAL J K. Tracking human motion using multiple cameras[ C ]//International Conference on Pattern Recognition. Piscataway : IEEE, 1996:68.
  • 2DONGS C,CRISTANI M,STOPPA M,et al. Custom picto- rial structures for re-identification [ J ]. BMVC, 2011,68 : 1 -11.
  • 3ZHENG Weishi, GONG Shaogang, TAO Xiang. Re-identifi- cation by relative distance comparison [ J]. IEEE Transac- tions on Pattern Analysis & Machine Intelligence ,2012,35 (3) :653 -668.
  • 4FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[ C ~ //Computer Vision and Pattern Recognition (CVPR). Piscataway : IEEE, 2010 : 2360 - 2367.
  • 5MA B,SU Y,JURIE F. Local descriptors encoded by fisher vectors for person re-identification [ C ]//Proceedings of the 12th International Conference on Computer Vision-Volume Part I. 2012:413 -422.
  • 6LIU Chunxiao, GONG Shaogang, CHEN C L, et al. Person re-identification: What features are important.'? [ M 1- Ber- lin : Springer,2012 : 391 - 401.
  • 7ZHAO Rui, OUYANG Wanli, WANG Xiaogang. Unsuper- vised salience learning for person re-identification [ C ] // IEEE Conference on Computer Vision & Pattern Recogni- tion. Piscataway : IEEE, 2013 : 3586 - 3593.
  • 8BAK S,CORVEE E, BRMOND F, et al. Person re-identifi- cation using spatial covariance regions of human body parts [ C ]//IEEE International Conference on Advanced Video & Signal Based Surveillance. 2010:435 -440.
  • 9SCHWARTZ W R, DAVIS L S. Learning discriminative ap- pearance-based models using partial least squares [ C ]// Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing. Piscataway:IEEE Comput- er Society,2009:322 - 329.
  • 10LIU Chunxiao, GONG Shaogang, CHEN C L. On-the-fly feature importance mining for person re-identification [ J]. Pattern Recognition ,2014,47 (4) : 1602 - 1615.

同被引文献16

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部