期刊文献+

原材料采购问题的占线竞争策略分析 被引量:8

Online competitive strategy for raw materials procurement
原文传递
导出
摘要 研究的是价格不确定条件下的原材料采购问题.在实际的原材料采购决策中,经常会遇到如下情形:特定时间内某原材料的价格随时间的变动具有不可预期性,同时该原材料具有固定的需求消耗.为了最小化采购费用,我们需要在满足需求的条件下确定在什么时间,以什么价格以及采购多少的决策问题.以往的研究一般都是假设采购价格是随机波动的,而实际情况中价格常常是不可随机观测的.本文从占线理论出发考虑了原材料占线采购问题,设计了一个竞争策略,证明了相应的竞争比,该竞争比结果优于已有结果. This paper analyzes the problem of raw material procurement under the price uncertainty. The scenario that the price of some kinds of materials vary with time unexpectedly and the materials have the stable consumption of demand at the same time is encountered constantly in practical material procurement. Meanwhile, in order to minimizing the cost of procurement, we need to make the decisions of when we should procure and how much materials we should buy with how much price we should pay under the condition of meeting demand. A general hypothesis in the most previous studies is that the price of procurement follows a certain distribution. However, price mostly cannot be clearly described in practical situations. Considering the material online procurement problem from online theory in this paper, a competitive strategy is proposed and we prove the ratio is better than the existed results.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2016年第6期1490-1495,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70901012) 中央高校基本科研业务费专项资金(ZYGX2013J134)~~
关键词 占线 采购 竞争策略 竞争比 online procurement competitive strategy competitive ratio
  • 相关文献

参考文献20

  • 1Fabian T, Fisher J L, Sasieni M W. Purchasing raw material on a fluctuating market[J]. Operations Research, 1959, 7(1): 107-122.
  • 2Golabi K. Optimal inventory policies when ordering prices are random[J]. Operations Research, 1985, 33(3): 575 588.
  • 3Yang J, Xia Y S. Acquisition management under fluctuating raw material prices[J]. Production and Operations Management, 2009, 18(2): 212 225.
  • 4Berling P. The capital cost of holding inventory with stochastically mean-reverting purchase price[J]. European Journal of Operational Research, 2008, 186(2): 620-636.
  • 5Kalymon B. Stochastic prices in a single-item inventory purchasing model[J]. Operations Research, 1971, 19(6): 1434-1458.
  • 6Wang Y. The optimality of myopic stocking policies for systems with decreasing purchasing prices[J]. European Journal of Operational Research, 2001, 133(1): 153- 159.
  • 7Sato K, Sawaki K. A continuous review inventory model with stochastic prices produced in the spot market[J]. Journal of the Operations Research Society of Japan, 2010, 53(2): 136-148.
  • 8Berling P, Martfnez-de-Albniz V. Optimal inventory policies when purchase price and demand are stochastic[J]. Operations Research, 2011, 59(1): 109-124.
  • 9Zipkin P H. Foundations of inventory management[M]. McGraw-Hill Education, 2000.
  • 10Porteus E L. Foundations of stochastic inventory theory[M]. Stanford University Press, 2002.

二级参考文献23

  • 1Current J, Daskin M, Schilling D. Discrete Network Location Models[M]// Drezner Z, Hamacher W. Facility Location: Applications and Theory, Springer, 2002, 81-118.
  • 2Kariv O, Hakimi S L. An algorithm approach to network location problems, Part I: The p-centers[J]. SIAM J Appl Math, 1979, 37: 513-538.
  • 3Kariv O, Hakimi S L. An algorithm approach to network location problems, Part II: The p-medians[J]. SIAM J Appl Math, 1979, 37: 539-560.
  • 4Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness[M]. Freeman, San Francisco, CA, 1979.
  • 5Borodin A, E1-Yaniv R. Online Computation and Competitive Analysis[M]. Cambridge: Cambridge University Press, 1998.
  • 6Fiat A, Woeginer G J. Online Algorithms: The State of the Art[M]. Springer, 1998.
  • 7Mettu R R, Plaxton C G. The online median problem[J]. SIAM Journal on Computing, 2003, 32(3): 816-832.
  • 8Chrobak M, Kenyon C, Noga J, et al. Incremental medians via online bidding[J]. Algorithmica, 2008, 50: 455-478.
  • 9Shenmaier V V. An approximate solution algorithm for the one-dimensional online median problem[J]. Journal of Applied and Industrial Mathematics, 2008, 2(3): 421-425.
  • 10Jain K, Vazirani V. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation[J]. Journal of the ACM, 2001, 48: 274-296.

共引文献7

同被引文献29

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部