期刊文献+

Incorporating vehicle mix in stimulus-response car-following models 被引量:1

Incorporating vehicle mix in stimulus-response car-following models
原文传递
导出
摘要 The objective of this paper is to incorporate vehicle mix in stimulus-response car-following models. Separate models were estimated for acceleration and deceleration responses to account for vehicle mix via both movement state and vehicle type. For each model, three submodels were developed for different pairs of following vehicles including "automobile following automobile," "automobile following truck," and "truck following automobile." The estimated model parameters were then validated against other data from a similar region and roadway. The results indicated that drivers' behaviors were significantly different among the different pairs of following vehicles. Also the magnitude of the estimated parameters depends on the type of vehicle being driven and/or followed. These results demonstrated the need to use separate models depending on movement state and vehicle type. The differences in parameter estimates confirmed in this paper highlight traffic safety and operational issues of mixed traffic operation on a single lane. The findings of this paper can assist transportation professionals to improve traffic simulation models used to evaluate the impact of different strategies on ameliorate safety and performance of highways. In addition, driver response time lag estimates can be used in roadway design to calculate important design parameters such as stopping sight distance on horizontal and vertical curves for both automobiles and trucks. The objective of this paper is to incorporate vehicle mix in stimulus-response car-following models. Separate models were estimated for acceleration and deceleration responses to account for vehicle mix via both movement state and vehicle type. For each model, three submodels were developed for different pairs of following vehicles including "automobile following automobile," "automobile following truck," and "truck following automobile." The estimated model parameters were then validated against other data from a similar region and roadway. The results indicated that drivers' behaviors were significantly different among the different pairs of following vehicles. Also the magnitude of the estimated parameters depends on the type of vehicle being driven and/or followed. These results demonstrated the need to use separate models depending on movement state and vehicle type. The differences in parameter estimates confirmed in this paper highlight traffic safety and operational issues of mixed traffic operation on a single lane. The findings of this paper can assist transportation professionals to improve traffic simulation models used to evaluate the impact of different strategies on ameliorate safety and performance of highways. In addition, driver response time lag estimates can be used in roadway design to calculate important design parameters such as stopping sight distance on horizontal and vertical curves for both automobiles and trucks.
出处 《Journal of Traffic and Transportation Engineering(English Edition)》 2016年第3期226-235,共10页 交通运输工程学报(英文版)
关键词 CAR-FOLLOWING Stimulus-response Acceleration/deceleration Vehicle mix Driver response time lag Car-following Stimulus-response Acceleration/deceleration Vehicle mix Driver response time lag
  • 相关文献

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部