期刊文献+

关于Q(-38)^(1/2)的Tame核的计算

On the Computation of the Tame Kernel of Q(-38)^(1/2)
下载PDF
导出
摘要 对于虚二次域F=Q(-38)^(1/2),K2OF的结构已被给出,但未给出具体计算。对此,给出了详细的计算与刻画,并且证明了K_2O_F■K_2^(S_3)(F)。 For the quadratic imaginary number field F=Q(-38)^(1/2),the structure of K_2O_F was presented,but the specific calculation was not illustrated.A detailed description and calculation has been completed,and proved that K_2O_F■K_2^(S_3)(F).
出处 《青岛大学学报(自然科学版)》 CAS 2016年第2期22-28,共7页 Journal of Qingdao University(Natural Science Edition)
关键词 虚二次域 Milnor K-群 Tame核 imaginary quadratic field Milnor K-group tame kernel
  • 相关文献

参考文献6

  • 1Garland H, A finiteness theorem for K2 of a number field [J]. Ann. Of Math, 1971(94) : 543 - 548.
  • 2Bass H, Tate J. The Milnor ring of a global field, Lecture Notes in Mathematics[M]. Springer Berlin Heidelberg, Berlin, 1973:349 428.
  • 3Bass H, Tate J. The Milnor ring of a global field, Lecture Notes in Mathematics[M]. Springer Berlin Heidelberg, Berlin, 1973:429 - 446.
  • 4Skalba M. Generalization of Thues theorem and computation of the group K20e [J]. Journal of Number Theory, 1994, 46(3): 303 - 322.
  • 5Browkin J, Gangl H. Computing the tame kernel of quadratic imaginary fields[J]. Mathematics Of Computation, 2000, 69(232) : 1667 - 1683.
  • 6Belabas H, Gangl H. Generators and relations for KzOF , Fimaginary quadratic, in preparation[J]. K-theory, 2001, 31 (2004) : 195 - 231.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部