期刊文献+

涉及二阶线性递归序列的两类多项式的因式分解

The Decomposition of two Kinds of Polynomials Involving 2-order Linear Recursive Sequence
下载PDF
导出
摘要 定义了与二阶线性递归序列{w_n}相关的序列{d_(i,j)}和{d_(i,j)},及与序列{w_n},{di,j}和{di,j}相关的多项式r_n(x),l_n(x),t_n(x)和t_n(x),根据{w_n}的递推关系和相关性质,研究了{d_(i,j)}和{d_(i,j)}的相关性质,得到了一系列关于l_n(x),t_n(x)和t_n(x)的多项式的因式分解. In this paper,new sequences{ d_(i,j)} and{d_(i,j)},and their related 2-order linear recursive sequence{ w_n} were defined,and some polynomials r_n(x),l_n( x),t_n( x) and t_n( x) associated with { w_n},{ d_(i,j)} and{d_(i,j)} were defined. According to the recurrence relation and related properties of sequence{ wn} and we studied the properties of { d_(i,j)} and{d_(i,j)},a series of l_n( x),t_n( x) and t_n( x) polynomial factorization were obtained.
作者 孙苹 胡宏
出处 《淮阴师范学院学报(自然科学版)》 CAS 2016年第2期104-109,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 二阶线性递归序列 多项式 因式分解 2-order linear recursive sequences polynomial decomposition
  • 相关文献

参考文献4

二级参考文献22

  • 1W Wang, T Wang. Identities via Bell Matrix and Fibonaeci Matrix[J]. Discrete Appl. Math, 2008,156 (14):2 793-2 803.
  • 2N J A Sloane. Jacobsthal Sequence, From the On-Line Encyclopedia of Integer Sequences Web Resource[EB/OL]. http://www. research. att. com/njas/sequences/A001045.
  • 3G Y Lee,J SKim, S H. Cho. Some Combinatorial Identities via Fibonacci Numbers[J]. Discrete Appl. Math, 2003,130(3):527-534.
  • 4E W Weisstein.Lueas Sequence, From Math World-A Wolfram Web Resource[EB/OL]. http://www.mathworld.wolfram.com/LucasSequence, html.
  • 5M Tan,T Wang. Lah Matrix and Its Algebraic Properties[J]. Ars Cmbin,2004,70(3):197-108.
  • 6X Fu, X Zhou.On matrices Related with Fibonacei and Lueas Numbers[J]. Applied Mathematics and Computation, 2008,200 (1):96-100.
  • 7X Zhao,T Wang. The Algebraic Properties of the Generalized Pascal Matriees Associalated with the Exponential Families[J].Linear Algebra Appl,2000,318(1):45-52.
  • 8G S Cheon,J S Kim. Stifling Matrix via Pascal Matrix[J]. Linear Algebra Appl,2001,329(1-3) :49-59.
  • 9L.Comtet. Advanced Combinatorics[M]. D. Reidel Publishing Co. ,Dordrecht, 1974.
  • 10W Wang,T Wang. Matrices Related to the Bell Poiynomials[J]. Linear Algebra Appl,2007,422(1):139-154.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部