期刊文献+

一种基于蚁群优化的动态节能路由选择策略 被引量:2

A dynamic energy-saving routing strategy based on ant colony optimization in wireless sensor networks
下载PDF
导出
摘要 针对无线传感器网络中寻找最优路径的问题,考虑网络的节能需求,提出了一种基于蚁群优化的动态节能路由选择策略。蚁群算法在进行过一段时间后,受转移概率公式影响易于陷入局部最优解,因此在提出的基于蚁群优化的动态节能路由选择策略中设计了动态状态转移优化规则,合理的增加了新节点的搜索概率,从而达到快速有效的寻找全局最优解的目的;此外,基于蚁群优化的动态节能路由选择策略设计了奖罚机制,进一步节省搜索时间的同时增加最优路径搜索概率,极大的延长了网络生存时间。仿真实验及分析表明,通过动态状态转移优化规则及奖惩机制的动态调整极大的增加了全局最优解的搜索概率,快速有效地实现了全局最优解的获得,节省了节点能量消耗,有利于延长网络生存时间。 Focus on the problem of finding the optimal path in wireless sensor networks(WSN),and energy saving requirement,a dynamic energy-saving routing strategy based on ant colony optimization(ACO)was proposed.Because of being influenced by the transition probability formula,the algorithm of ACO is easy to fall into local optimal solution after running for a period of time.Thus,in this paper,our strategy designs the optimization rule of dynamic state transformation,which increases the search probability of the new node,so as to achieve the purpose of searching the global optimal solution quickly and effectively.In addition,our strategy introduces the mechanism of rewards and penalties,which further saves the search time and increase the probability of optimal path search,and prolongs the network survival time greatly.Simulation and theoretical analysis showed that the searching probability of a global for the optimal solution is increased by dynamic adjustment of the dynamic state transition rule and the mechanism of rewards and punishments,and the global optimal solution is obtained quickly and effectively.Furthermore the energy consumption of the nodes is saved,and will extend the lifetime of network greatly.
出处 《沈阳师范大学学报(自然科学版)》 CAS 2016年第2期234-239,共6页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61403073)
关键词 无线传感器网络 蚁群算法 状态转移优化规则 奖惩机制 Wireless sensor networks(WSN) ant colony optimization(ACO) optimization rule of dynamic state transformation the mechanism of rewards and penalties
  • 相关文献

参考文献16

  • 1QU Wei,LIN Hai,WANG Jinkuan.A dynamic energy-efficient routing scheme in Wireless Sensor Networks[J].ICIC-EL,2014,8(11):3113-3119.
  • 2KARIMI M,NAJI H R.Optimize cluster-head selection in wireless sensor networks using genetic algorithm and harmony search algorithm[C]∥20th Iranian Conference on Electrical Engineering,2012:706-710.
  • 3张国印,唐滨,孙建国,李佳楠.面向内容中心网络基于分布均匀度的蚁群路由策略[J].通信学报,2015,36(6):1-12. 被引量:12
  • 4曲大鹏,王兴伟,黄敏.移动对等网络中的感知蚁群路由算法[J].计算机学报,2013,36(7):1456-1464. 被引量:15
  • 5AL-ALI R,RANA O,WALKER D W,et al.G-QoSM:grid service discovery using QoS properties[J].China J Comput,Comput Inf,2012,21(4):363-382.
  • 6陈志泊,徐孝成.一种改进的基于跳数的无线传感器网络路由算法[J].计算机科学,2013,40(4):83-85. 被引量:12
  • 7AMALDI E,CAPONE M,FILIPPINI I.Design of wireless sensor networks for mobile target detection[J].IEEE/ACM Transactions on,2012,20(3):784-797.
  • 8KARABOGA D,OKDEM S,OZTURK C.Cluster based wireless sensor network routing using artificial bee colony algorithm[J].Wireless Networks,2012,18(7):847-860.
  • 9OKDEM S,OZTURK C,KARABOGA D.A comparative study on differential evolution based routing implementations for wireless sensor networks[C]∥Innovations in Intelligent Systems and Applications(INISTA),2012International Symposium on,2012:1-5.
  • 10COLORNI A,DORIGO M,MANIEZZO V,et al.Distributed optimization by ant colonies[C]∥Proceedings of European Conference on Artificial Life,1991:134-142.

二级参考文献97

共引文献127

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部