期刊文献+

Littlewood-Paley算子交换子的Lipschitz估计

Lipschitz Estimate of Littlewood-Paley Operator and Commutator
下载PDF
导出
摘要 本文应用变指标Herz型Hardy空间上的原子分解定理,证明了由Littlewood-Paley算子和Lipschitz函数生成的交换子在变指标Herz型Hardy空间上的有界性. By using the atomic decomposition characterizations of Herz-type Hardy spaces with variable exponent,some boundedness of the commutators generated by Littlewood-Paley operators and Lipschitz functions on the Herz-type Hardy spaces with variable exponent is obtained.
出处 《淄博师专学报》 2016年第2期45-48,共4页 Journal of Zibo Normal College
关键词 LITTLEWOOD-PALEY算子 交换子 HERZ型HARDY空间 变指标 LIPSCHITZ估计 Littlewood-Paley operator commutator Herz-type Hardy space variable exponent Lipschitz estimate
  • 相关文献

参考文献13

  • 1Kovcleik O, Rdkosnik J. On spaces Lp() and Wk'pC [J]. Czechoslovak Math J, 1991, 116(41) : 592-618.
  • 2Diening L, Harjulehto P, Hist6 P, et al. Lebesgue and Sobo- lev spaces with variableExponents[M]. Heidelberg.. Spring- er, Lecture Notes in Math, vol. 2017, 2011.
  • 3Diening L, Riesz potential and Sobolev embeddings of general- ized Lebesgue and Soblev spacesLp(" and Wk' P [J]. Math Nachr, 2004, 268(1), 31--43.
  • 4Xu J S, Variable Besov and Triebel-Lizorkin spaces[J]. Ann Acad Sci Fenn Math, 2008, 33, 511--522.
  • 5Izuki M, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet character- ization[J]. Anal Math, 2010, 36(1), 33--50.
  • 6Nakai E, Sawano Y, Hardy spaces with variable exponents and generalized Campanato spaces[J]. J Funct Anal, 2012, 262(9), 3665--3748.
  • 7Wang H B, Liu Z Z, The Herz-type Hardy spaces with varia- ble exponent and their applications[J]. Taiwan Residents J Math, 2012, 16(4), 1363--1389.
  • 8Wang H B, Liu Z Z, The wavelet characterization of Herz- type Hardy spaces with variable exponent[J]. Ann Funct A- nal, 2012, 3(1) 128--141.
  • 9Wang H B, Liu Z Z, Some characterizations of Herz-type Hardy spaces with variable exponent[J]. Ann Funet Anal, 2015, 6(2), 224--243.
  • 10Wang H B, Liu Z Z, Local Herz-type Hardy spaces with variable exponent[J]. Banach J Math Anal, 2015, 9(4), 359 --378.

二级参考文献33

  • 1Welland G V. Weighted norm inequalities for fractional integrals[J]. Proe Amer Math Soc,1975,51 (1) :143-148.
  • 2Auscher P, Martell J M. Weighted norm inequalities for fractional operators [ J ]. Indiana Univ Math J, 2008,57 ( 4 ) : 1845 -1870.
  • 3Kovacik O,Rakosnik J. On spaces Lp^(x) and W^k.p(x) [ J]. Czechoslovak Math J, 1991,41 (4) : 592-618.
  • 4Diening L, Harjulehto P, Hiists P, et al. Lebesgue and Sobolev Spaces with Variable Exponents [ M]. Heidelberg: Springer, 2011.
  • 5Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Applied and Numerical Harmonic Analysis) [ M ]. Heidelberg : Birkhiiuser/Springer, 2013.
  • 6Diening L. Riesz potential and Sobolev embeddings of generalized Lebesgue and Soblev spaces L^p(·) and W^k,p(·) [ J ].Math Nachr,2004,268 ( 1 ) :31-43.
  • 7Xu Jingshi. Variable Besov and Triebel-Lizorkin spaces [ J ]. Ann Acad Sci Fenn Math ,2008,33 (2) :511-522.
  • 8Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characteriza- tion[J]. Anal Math,2010,36( 1 ) :33-50.
  • 9N akai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces [ J ]. J Funet Anal,2012,262(9) :3665-3748.
  • 10Wang Hongbin, Liu Zongguang. The Herz-type Hardy spaces with variable exponent and their applications [ J ]. Taiwan Residents J Math,2012,16(4) : 1363-1389.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部