摘要
基于非线性动力学理论研究了不可压电活性聚合物圆柱壳在内表面周期载荷作用下的运动与破坏等动力响应问题.通过对所得描述圆柱壳内表面运动的非线性常微分方程的数值计算和动力学定性分析,发现存在临界载荷和临界电压;当周期载荷的平均载荷值小于临界载荷及外加电压小于临界电压时,圆柱壳的运动随时间的演化是拟周期性的非线性振动.反之,圆柱壳将被破坏.讨论了外加电场和载荷参数对临界值和圆柱壳运动特性的影响.
The dynamical response including the motion and the destruction of the electro-active polymer cylindrical shells subjected to the periodic pressure on the inner surface are studied within the framework of finite elas- to-dynamics. It is proved that there exists a certain critical value of the internal pressure and the electric field through numerical computing and dynamic qualitative analysis based on the nonlinear differential equation for the motion of the inner surface of the shell. The motion of the shell is nonlinear quasi-periodic oscillation when the mean pressure of the periodic pressure and the voltage are less than their critical values, respectively. In contrast, the shell is destroyed when the pressure or the voltage exceeds the corresponding critical value. Moreover, the effect of the electric field and the pressure parameters on the critical values and the oscillation of the shell are then discussed.
出处
《动力学与控制学报》
2016年第3期211-216,共6页
Journal of Dynamics and Control
基金
上海市重点学科建设资助项目(S30106)~~
关键词
电活性聚合物
非线性常微分方程
拟周期振动
临界载荷
破坏
electro-active polymer, nonlinear differential equation, quasi-periodic oscillation, criticalpressure, destruction