期刊文献+

周期载荷下电活性聚合物圆柱壳的动力响应 被引量:1

DYNAMICAL RESPONSE OF ELECTRO-ACTIVE POLYMER CYLINDRICAL SHELLS UNDER PERIODIC PRESSURE
下载PDF
导出
摘要 基于非线性动力学理论研究了不可压电活性聚合物圆柱壳在内表面周期载荷作用下的运动与破坏等动力响应问题.通过对所得描述圆柱壳内表面运动的非线性常微分方程的数值计算和动力学定性分析,发现存在临界载荷和临界电压;当周期载荷的平均载荷值小于临界载荷及外加电压小于临界电压时,圆柱壳的运动随时间的演化是拟周期性的非线性振动.反之,圆柱壳将被破坏.讨论了外加电场和载荷参数对临界值和圆柱壳运动特性的影响. The dynamical response including the motion and the destruction of the electro-active polymer cylindrical shells subjected to the periodic pressure on the inner surface are studied within the framework of finite elas- to-dynamics. It is proved that there exists a certain critical value of the internal pressure and the electric field through numerical computing and dynamic qualitative analysis based on the nonlinear differential equation for the motion of the inner surface of the shell. The motion of the shell is nonlinear quasi-periodic oscillation when the mean pressure of the periodic pressure and the voltage are less than their critical values, respectively. In contrast, the shell is destroyed when the pressure or the voltage exceeds the corresponding critical value. Moreover, the effect of the electric field and the pressure parameters on the critical values and the oscillation of the shell are then discussed.
出处 《动力学与控制学报》 2016年第3期211-216,共6页 Journal of Dynamics and Control
基金 上海市重点学科建设资助项目(S30106)~~
关键词 电活性聚合物 非线性常微分方程 拟周期振动 临界载荷 破坏 electro-active polymer, nonlinear differential equation, quasi-periodic oscillation, criticalpressure, destruction
  • 相关文献

参考文献4

二级参考文献87

  • 1凌复华.非线性振动系统周期解的数值分析[J].应用数学和力学,1983,4(4).
  • 2Fu Y B, Ogden R W. Nonlinear Elasticity [ M ]. Cambridge University Press, 2001.
  • 3Knowles J K. Large amplitude oscillations of a tube of incom- pressible elastic material[ J]. Q. Appl. Math. , 1960, 18 ( 1 ) :71-77.
  • 4Knowles J K. On a class of oscillations in the finite deformation theory of elasticity[J]. J. Appl. Mech. , 1962, 29(2) : 283-286.
  • 5Guo Z H, Solecki R. Free and forced finite amplitude oscillations of an elastic thick-walled hollow sphere made of incom-pressible material[J]. Arch. Mech. Stos., 1963, 15(3): 427-433.
  • 6Calderer C. The dynamical behavior of nonlinear elastic spherical shells[ J]. J. of Elasticity, 1983, 13 (1) : 17-41.
  • 7M-S Chou-Wang, Horgan C 0. Cavitation in nonlinear elasto- dynamic for neo-Hookean materials[J]. Int. J. of Engineering Science, 1989, 27 (8) :967-973.
  • 8Cho J R, Song J T, Noh K T, et al. Nonlinear finite element analysis of swagins proeess for automobile power steering hose [ J]. Journal of Materials Processing Technology, 2005, 170 (1) : 50-57.
  • 9Nicholson D W, Nelson N. Finite element analysis in design with rubber elasticity [ J ]. Rubber Chem. Technol. , 1990, 63 ( 3 ) :358-406.
  • 10Baughman R H,Cui C,Zakhidov A A,lqbal Z,Barisci J N,Spinks G M, Wallace G G, Mazzoldi A, Rossi D D, Rinzler A G, Jas-chinski O, Roth S, Kertesz M. Carbon nanotubes actuators [J]. Science, 1999, 284 (5418) : 1340-1344.

共引文献24

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部