期刊文献+

伽马跳跃-扩散模型在中国证券市场的应用

Application of Gamma Jump-Diffusion Process in China's Stock Market
下载PDF
导出
摘要 跳跃扩散模型是研究资产收益率分布的一个重要模型,本文在将伽马分布设为跳跃扩散模型的跳幅分布的基础上,选取中国证券市场中比较有代表性的10只股票的对数收益率为研究对象,运用Nelder-Mead方法对模型中的参数进行极大似然估计,得出了伽马跳跃扩散模型拟合高峰度的数据效果较好。 The jump-diffusion process is an important model for the distribution of the rate of return on assets. Based on the jump diffusion models,this paper implies the Gamma distribution for jump magnitudes. We choose 10 representative stocks from China's stock market as research subjects. At the same time,we use the Nelder-Mead method to obtain the maximum likelihood estimates of parameters of the model. We find that the Gamma jump-diffusion process performs better in stocks with high kurtosis than in stocks with low kurtosis.
出处 《科技广场》 2016年第5期116-118,共3页 Science Mosaic
关键词 伽马分布 极大似然估计 高峰度 Gamma Distribution Maximum Likelihood Estimation High Kurtosis
  • 相关文献

参考文献7

  • 1C.Ramezani, Y.Zeng.Maximum likelihood estimation of the double exponential jump-diffusion process [J].Annals of Fi- nance, 2007, (03) : 487-507.
  • 2C.Ramezani, Y.Zeng.Maximum likelihood estimation of asymmetric jump-diffusion processes:Application to security price, Working Paper[D].Department of Mathematics and Statis- tics, University of Missouri, Kansas City, 1998.
  • 3S.Kou.A jump diffusion model for option pricing [J]. Manage SCI, 2002,48(08 ) : 1086-1101.
  • 4S.Kou, H.Wang.Option pricing under a double exponen- tial jump diffusion model [J].Manage SCI,2004,50 (09): 1178-1192.
  • 5Gideon Schwarz.Estimating the Dimension of a Model [J].Annals of Statistics, 1978,6 (02) : 461-464.
  • 6刘晓曙.三种双指数跳跃扩散模型实证比较研究[J].南方经济,2008,37(2):64-72. 被引量:4
  • 7胡素华,张世英,张彤.双指数跳跃扩散模型的McMC估计[J].系统工程学报,2006,21(2):113-118. 被引量:25

二级参考文献47

  • 1胡素华,张世英,张彤.双指数跳跃扩散模型的McMC估计[J].系统工程学报,2006,21(2):113-118. 被引量:25
  • 2胡素华,张彤,张世英.正态逆高斯扩散模型的MCMC估计[J].系统工程理论方法应用,2006,15(2):133-138. 被引量:5
  • 3Chibs S,Greenberg E.Understanding the metropolis-hastings algorithm[J].American Statistician,1995,49(2):327-35.
  • 4Gilks W R,Richardson S,Spiegelhatler D J.Introducing Markov chain Monte Carlo[A].In:Markov Chain Monte Carlo in Practice[M].Gilks W R,Richardson S,Spiegelhalter D J.London:Chapman and Hall,1996.1-20.
  • 5Roberts G O.Markov chain concepts related to sampling algorithms[A].In:Markov Chain Monte Carlo in Practice[M].Gilks W R,Richardson S,Spiegelhalter D J.London:Chapman and Hall,1996.45-57.
  • 6Kim S,Shephard N,Chib S.Stochastic volatility:Likelihood inference and comparison with ARCH models[J].Review of Economic Studies,1998,65(2):361-93.
  • 7Meyer R,Yu J.BUGS for a Bayesian analysis of stochastic volatility models[J].Econometrics Journal,2000,3(2):198-215.
  • 8Tse Y K,Zhang X B,Yu J.Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method[J].Quantitative Fi-nance,2003,3(1):1-12.
  • 9Merton R C.Theory of rational option opricing[J].Bell Journal of Economics,1973,4(1):141-183.
  • 10Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-659.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部