期刊文献+

基于便携式脑电信号采集器的脑-机器人交互系统 被引量:21

Brain-robot interaction system based on portable brain signal collector
下载PDF
导出
摘要 针对现有高精度脑电信号采集设备体积笨重、成本高、无法普及的问题,开发了便携低成本的多通道脑电信号采集器,并以可编程可定制的乐高机器人为应用实例,搭建了集注意力训练、教育、娱乐于一体的脑-机器人交互系统。脑电信号采集器内置锂电池,体积为65 mm×40 mm×21 mm,重约60 g,以无线方式传输信号。在此基础上,结合典型相关分析(canonical correlation analysis,CCA)与快速傅里叶变换(fast Fourier transformation,FFT),提出了基于CCA-Wx-FFT的SSVEP特征提取算法,对采集器信号进行分析,以确保对机器人的精确控制。10名被试的测试结果表明,本系统获得了与高精度EEG设备相近的信号特征和控制准确率(92.6%vs 94.1%)。这一脑-机器人交互系统极大地降低了系统开发的成本,方便携带,易于扩展,对脑控的普及具有重要的应用价值。 Most of the existing high-precision EEG acquisition systems lie in their volume and heaviness as well as high cost,which restrict their widespread applications. In this paper,a low-cost portable multichannel brain signal collector is designed and a brain-robot interaction system for attention training,education and entertainment is established by combining a programmable and customized Lego robot. The brain signal collector powered by lithium battery is only 65 mm × 40 mm × 21 mm in volume and 60 g in weight,and transmits signals wirelessly. In addition,this paper proposes the feature extraction algorithm CCA-Wx-FFT based on the canonical correlation analysis( CCA) and the fast Fourier transformation( FFT) for the analysis of steady-state visual evoked potential( SSVEP) data and the precise control of the robot. The experimental results of ten subjects demonstrate that the developed brain signal collector delivers comparable signal characteristics and accuracy( 92. 6% vs 94. 1%) with the high-precision EEG equipment. The brain-robot interaction system based on the proposed collector and the Lego robot has the advantages of low cost,convenient portability and easy expanding,so it is important to promote its popularization and practicability.
出处 《电子测量与仪器学报》 CSCD 北大核心 2016年第5期694-701,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61473207)资助项目
关键词 便携式 脑电信号采集器 脑-机器人交互系统 CCA权重系数 注意力 portable brain signal collector brain-robot interaction system weight coefficients of CCA mental concentration
  • 相关文献

参考文献6

二级参考文献186

  • 1张金平,张定会,谢光伟,吴昱旻.基于Linux下的ARM与DSP之间数据通信[J].仪器仪表学报,2006,27(z3):2056-2059. 被引量:8
  • 2王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 3万柏坤,綦宏志,赵丽,陈滨津,毕卡诗,陈骞.基于脑电Alpha波的脑-机接口控制实验[J].天津大学学报,2006,39(8):978-984. 被引量:18
  • 4华成英,童诗白.模拟电子技术基础[M].4版.北京:高等教育出版社,2006.
  • 5马彦臻.基于运动想象的脑电信号处理方法研究[D].天津:天津职业技术师范大学,2012.
  • 6魏景汉,罗跃嘉.(2010).事件相关电位原理与技术北京:科学出版社.
  • 7Wolpaw J R, Birbaumer N, Heetderkd W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrono L A, Robin- son C J, Vaughan T M. Brain-computer interface technol- ogy: a review of the first international meeting. IEEE Trans- actions on Rehabilitation Engineering, 2000, 8(2): 164-173.
  • 8Vidal J J. Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 1973, 2: 157-180.
  • 9Gazzaniga M S, Ivry R, Mangun G R. Cognitive Neuro- science. New York: W. W. Norton and Company, Inc., 2002.
  • 10Galambos R, Sheatz G C. An electroencephalography study of classical conditioning. American Journal of Physiology, 1962, 203(1): 173-184.

共引文献171

同被引文献139

引证文献21

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部