期刊文献+

非对称p-Laplacian Dirichlet问题的非平凡解(英文)

Nontrivial Solutions for Asymmetric p-Laplacian Dirichlet Problem
下载PDF
导出
摘要 本文研究一类特殊的p-Laplacian问题,其非线性项在正负无穷远处有不同的增长行为,即在正无穷远处超线性增长而在负无穷远处渐近线性增长.利用变分法结合Moser-Trudinger不等式,建立一些非平凡解的存在性结果. We consider a class of particular p-Laplacian Dirichlet problem with a right-hand side nonlinearity which exhibits asymmetric growth at +∞ and-∞. Namely, it is linear at-∞ and superlinear at +∞. Some existence results for nontrivial solution are established by using variational methods combined with Moser-Trudinger inequality.
出处 《应用数学》 CSCD 北大核心 2016年第3期477-487,共11页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11571176) NSF of Gansu Province(1506RJZE114) TSNC(TSA1406) the Scientific Research Foundation of the Higher Education Institutions of Gansu Province(2015A-131,2015A-129)
关键词 非对称p-Laplacian DIRICHLET问题 渐近线性 超线性 次临界指数增长 单侧共振 Asymmetric p-Laplacian Dirichlet problem Asymptotically linear Superlinear Subcritical exponential growth One side resonance
  • 相关文献

参考文献21

  • 1Arcoya D, Villegas S. Nontrivial solutions for a Neumann problem with a nonlinear term asymptoti- cally linear at -∞ and superlinear at -∞[J]. Math. Z., 1995, 219: 499-513.
  • 2De Figueiredo D G, Ruf B. On a superlinear Sturm-Liouville equation and a related bouncing prob- lem[J]. J. Reine Angew. Math., 1991, 421:1-22.
  • 3Perera K. Existence and multiplicity results for a Sturm-Liouville equation asymptotically linear at -∞ and superlinear at +∞[J]. Nonlinear Anal., 2000, 39:669-684.
  • 4Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J. Funct. Anal., 1973, 14: 349-381.
  • 5Motreanu D, Motreanu V V, Papageorgiou N S. Multiple solutions for Dirichlet problems which are superlinear at +∞ and (sub-)linear at -∞[J]. Commun. Pur. Appl. Anal., 2009, 13: 341-358.
  • 6Papageorgiou E H, Papageorgiou N S. Multiplicity of solutions for a class of resonant p-Laplacian Dirichlet problems[J]. Pacific J. Math., 2009, 241: 309-328.
  • 7Papageorgiou N S, Smyrlis G. A multiplicity theorem for Neumann problems with asymmetric non- linearity[J]. Annali di Matematica pura ed Applicata, 2010, 189: 253-272.
  • 8Costa D G, Magalhaes C A. Variational elliptic problems which are nonquadratic at infinity[J]. Nonlinear Anal. TMA, 1994, 23:1401-1412.
  • 9Costa D G, Magalhaes C A. Existence results for perturbations of the p-Laplacian[J]. Nonlinear Anal. TMA, 1995, 24:409-418.
  • 10LI Gongbao, ZHOU Huansong. Asymptotically linear Dirichlet problem for the p-Laplacian[J]. Non- linear Anal. TMA, 2001, 43:1043-1055.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部