期刊文献+

一类四阶边值问题的特征值对边界的依赖性(英文) 被引量:2

Dependence of Eigenvalues of a Class of Fourth-order Boundary Value Problems on the Boundary
下载PDF
导出
摘要 本文研究四阶边值问题的特征值对边界的依赖性问题,指出带有支撑边界条件的四阶边值问题的特征值连续且光滑地依赖于边界点,给出其第n个特征值关于一端点的一阶微分表达式,并证明当区间长度趋于零时,其所有的特征值会趋于无穷. In this paper we study the dependence of eigenvalues of fourth-order boundary value problems on the boundary. We show that the eigenvalues of fourth-order boundary value problems with supported ends depend not only continuously but smoothly on boundary points, and that the derivative of the nth eigenvalue as a function of an endpoint satisfies a first order differential equation. In addition, we prove that as the length of the interval shrinks to zero all higher eigenvalues march off to plus infinity.
出处 《应用数学》 CSCD 北大核心 2016年第3期554-562,共9页 Mathematica Applicata
基金 Supported by the National Nature Science Foundation of China(11361039) the innovation fund of Inner Mongolia University of Science and Technology(2015QDL19)
关键词 四阶边值问题 特征值 特征函数 依赖性 Fourth-order boundary value problem Eigenvalue Eigenfunction Dependence
  • 相关文献

参考文献16

  • 1Dauge M, Helffer B. Eigenvalues variation, I. Neumann problem for Sturm-Liouville operators[J]. Differ. Equa., 1993, 104: 243-262.
  • 2Dauge M, Helffer B. Eigenvalues variation, II. Neumann problem for Sturm-Liouville operators[J]. Differ. Equa., 1993, 104: 263-297.
  • 3Kong Q, Zettl A. Dependence of eigenvalues of Sturm-Liouville problems on the boundary[J]. J. Differ. Equa., 1996, 126: 389-407.
  • 4WANG A P, SUN J, Zettle A. The classification of self-adjoint boundary conditions: separated coupled and mixed[J]. J. Funct. Anal., 2008, 255: 1554-1573.
  • 5GE S Q, WANG W Y, SUO J Q. Dependence of eigenvalues of a class of Fourth-order Sturm-liouville problems on the boundary[J]. Appl. Math. Comput., 2013, 220: 268-276.
  • 6Richard Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I[M]. New York: Wiley, 1989.
  • 7Kong Q, WU H, Zettl A. Dependence of the nth Sturm-Liouville eigenvalues on the problem[J]. J. Differ. Equa., 1999, 156: 328-354.
  • 8Kong Q, WU H, Zettl A. Geometric aspects of Sturm-Liouville problems. I. Structures on spaces of boundary conditions[J]. Proc. R. Soc. Edinb., 2000, 130: 561-589.
  • 9CAO X, Kong Q, WU H, Zettl A. Sturm-Liouville problems whose leading coefficient function changes sign[J]. Can. J. Math., 2003, 55: 724-749.
  • 10Kong Q, WU H, Zettl A. Limits of Sturm-Liouville eigenvalues when the interval shrinks to an end point[J]. Proc. R. Soc. Edinb., 2008, 138: 323-338.

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部