期刊文献+

基于分布式低秩表示的子空间聚类算法 被引量:5

Distributed Low Rank Representation-Based Subspace Clustering Algorithm
下载PDF
导出
摘要 针对基于低秩表示的子空间分割算法运算时间较长、聚类的准确率也不够高,提出一种基于分布式低秩表示的稀疏子空间聚类算法(distributed low rank representation-based sparse subspace clustering algorithm,DLRRS),该算法采用分布式并行计算来得到低秩表示的系数矩阵,然后保留系数矩阵每列的前k个绝对值最大系数,其他系数置为0,用此系数矩阵构造一个稀疏的样本关系更突出的相似度矩阵,接着用谱聚类得到聚类结果.但是其不具备增量学习功能,为此再提出一种基于分布式低秩表示的增量式稀疏子空间聚类算法(scalable distributed low rank representation based sparse subspace clustering algorithm,SDLRRS),如果有新增样本,可以利用前面的聚类结果对新增样本进行分类得到最后的结果.实验结果表明:所提2种子空间聚类算法不仅有效减少算法的运算时间,还提高了聚类的准确率,从而验证算法是有效可行的. Vision problem ranging from image clustering to motion segmentation can naturally be framed as subspace segmentation problem ,in which one aims to recover multiple low dimensional subspaces from noisy and corrupted input data .Low rank representation‐based subspace segmentation algorithm (LRR) formulates the problem as a convex optimization and achieves impressive results . However ,it needs to take a long time to solve the convex problem ,and the clustering accuracy is not high enough . Therefore , this paper proposes a distributed low rank representation‐based sparse subspace clustering algorithm (DLRRS) .DLRRS adopts the distributed parallel computing to get the coefficient matrix ,then take the absolute value of each element of the coefficient matrix ,and retain the k largest coefficients per column and set the other elements to 0 to get a new coefficient matrix . Finally ,DLRRS performs spectral clustering over the new coefficient matrix .But it doesn't have incremental learning function ,so there is a scalable distributed low rank representation‐based sparse subspace clustering algorithm (SDLRRS) here .If new samples are brought in ,SDLRRS can use the former clustering result to classify the new samples to get the final result .Experimental results on AR and Extended Yale B datasets show that the improved algorithms can not only obviously reduce the running time , but also achieve higher accuracy , w hich verifies that the proposed algorithms are efficient and feasible .
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第7期1605-1611,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61373055) 江苏省自然科学基金项目(BK20140419) 江苏省高校自然科学研究计划重大项目(14KJB520001)~~
关键词 低秩表示 子空间聚类 并行计算 增量学习 系数重建 low rank representation subspace clustering parallel computing incremental learning coefficients reconstruction
  • 相关文献

参考文献2

二级参考文献49

  • 1李存华,孙志挥,陈耿,胡云.核密度估计及其在聚类算法构造中的应用[J].计算机研究与发展,2004,41(10):1712-1719. 被引量:64
  • 2张廷宪,郑志刚.耦合非线性振子系统的同步研究[J].物理学报,2004,53(10):3287-3292. 被引量:15
  • 3Jain A K, Murty M N, Flynn P J. Data clustering: A review [J]. ACM Computing Surveys, 1999, 31(3): 264-323.
  • 4B6hm C, Plant C, Shao J, et al. Clustering by synchronization [C]//Proc of the 16th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2010: 583-592.
  • 5Kim J, Scott C D. Lz kernel classification [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32 (10) : 1822-1831.
  • 6Freedman D, Kisilev P. Fast data reduction via KDE approximation [C] //Proc of 2009 Data Compression Conference. Los Alamitos, CA: IEEE Computer Society, 2009, 445-445.
  • 7Chao H, Girolami M. Novelty detection employing an L2 optimal non-parametric density estimator [J]. Pattern Recognition Letters, 2004, 25(12), 1389-1397.
  • 8Moreno Y, Pacheco A F. Synchronization of Kuramo to oscillators in scale-free networks[J].Euro Physics Letters, 2004, 68(4): 603-609.
  • 9Girolami M, Chao H. Probability density estimation from optimally condensed data samples [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (10) 1253-1264.
  • 10Tsang I, Kwok J, Cheung P. Core vector machines: Fast SVM training on very large datasets [J]. Journal of Machine Learning Research, 2005, 6(4): 363-392.

共引文献25

同被引文献31

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部