期刊文献+

基于民航附加服务本体的个性化协同过滤算法

Personalized collaborative filtering algorithm based on auxiliary service ontology of civil aviation
下载PDF
导出
摘要 在构建完成的民航附加服务本体的基础上,针对传统协同过滤算法存在数据稀疏性和无法考虑项目自身语义关系等缺点,提出了基于本体的个性化协同过滤算法。该方法采用基于规则的推荐方法在Jena的基础上进行推理,然后利用推理结果更新本体,完善了本体中旅客的兴趣评分信息,降低了旅客兴趣评分稀疏性。接着引入本体语义相似度计算,将语义相似度与协同过滤算法相似度结合,加入了项目之间语义相似度的计算,提高了相似度计算的准确度。通过实验证明,改进的推荐技术很好地提高了推荐的准确性。 Personalized ontology -based collaborative filtering algorithm is proposed, aiming at the short -comings oftraditional collaborative filtering algorithm such as data -sparsity and lack of reflection to the semanticrelationship of item itself. The method adopts Jena inference engine and constructs association rules based onontology inference rules, and inference results are used to update ontology and complete the interest ratinginformation of tourist to reduce the sparsity of tourist interest rating. Then the ontology semantic similarity isintroduced to compute and combine the similarity of semantics and the similarity of collaborative filteringalgorithm, improving the accuracy of similarity calculation after adding semantic similarity computation betweenitems. Experiments prove that the hybrid recommendation technology effectively improves its accuracy.
出处 《中国民航大学学报》 CAS 2016年第3期42-46,共5页 Journal of Civil Aviation University of China
基金 天津市应用基础与前沿技术研究计划重点项目(14JCZDJC32500) 中国民航大学预研重大项目(3122013P003) 中国民用航空局科技基金项目(MHRDZ201207)
关键词 民航附加服务 推理机 语义相似度 协同过滤 auxiliary service of civil aviation Jena semantic similarity collaborative filtering
  • 相关文献

参考文献10

  • 1马铁勇.中国航空公司开展附加服务业务的政策研讨[J].空运商务,2014,0(10):17-19. 被引量:2
  • 2CHEN D. The Collaborative Filtering Recommendation Algorithm Basedon BP Neural Networks [C]//2009 International Symposium onIntelligent Ubiquitous Computing and Education, 2009: 234-236.
  • 3TAO Y F, YI K, SHENG C, et al. Quality and Efficiency in High DimensIonal Nearest Neighbor Search [C]//Proceedings of the 35th SIGMODInternational Conference on Management of Data. Rhode Island, USA,2009: 563-576.
  • 4ADIBI P, LADANI B T. A Collaborative Filtering Recommender SystemBased on User-s Time Pattern Activity[C]//2013 5th Conference on Informationand Knowledge Technology (IKT), 2013: 252-257.
  • 5MITTAL N, NAYAK R, GOVILM C, et al. Recommender System Frameworkusing Clustering and Collaborative Filtering[C]//Third InternationalConference on Emerging Trends in Engineering and Technology,2010: 555-558.
  • 6KIM J Y, JEONG D W, BAIK D-K. Ontology-based semantic recommendationsystem in home network environment[J]. IEEE Transactions onConsumer Electronics, 2009, 55(3 ):1178 -1184.
  • 7HOSER B, HOTHO A, JASCHKE R, et al. Semantic Network Analysisof Ontologies [C]//Proceedings of ESWC 2006, LNCS 4011, Berlin:Spr-inger, 2006: 514-529.
  • 8LEACOCK C, CHODOROW M. Word Net: An Electronic LexicalDatabase[M]. MIT Press, 1998: 265-283.
  • 9刘宏哲.文本语义相似度计算方法研究[D].北京:北京交通大学,2012.
  • 10MASE H, OHWADA H. A Collaborative Filtering Incorporating HybridClusteringTechnology[C]//International Conference on Systems and Informatics(ICSAI 2012), 2012: 2342-2346.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部