期刊文献+

实际气体介质离心压缩机级气动性能相似性分析 被引量:1

Similarity Analysis of Aerodynamic Performance on a Centrifugal Compressor Stage with Real Gas
下载PDF
导出
摘要 为研究某一离心压缩机模型级气动性能是否随不同实际气体介质变化,通过验证数值模拟与实验结果的符合性,采用数值方法对比分析了以空气为原始工作介质和以R134a(氟利昂)、CH_4(甲烷)为实际气体介质在当量转速与变转速下的气动性能的相似性及变化规律:无论以设计工况还是非设计工况为当量转换点,均能获得一致的当量转速值,且不同实际气体介质在当量转速下的多变效率及多变能量头系数曲线与原始气体性能曲线能够保持很好的符合度.以实际气体CH_4为例,说明了在变转速条件下,压缩机气动性能在亚音速时,不同马赫数的性能曲线及工况范围变化趋势一致;跨音速时,气体的最高效率点明显移向大流量工况,且马赫数越大,运行工况范围显著变窄,同时性能曲线不再满足相似性规律. To investigate whether the aerodynamic performance of a centrifugal compressor stage would change withdifferent real gas media,based on the conformity verification between numerical simulation and experimental results,the numerical method was adopted to compare and analyze the aerodynamic similarity and variation law ofcompressor stage,with air as original working medium and R134a and CH4 as real gas medium,separately,andwith the operating rotation speed of both equivalent rotation speed and variable rotation speed. The results demon-strate that no matter the design point or the off-design point is regarded as the base point of equivalent conversion,the equivalent rotation speeds are pretty much the same,and the polytropic efficiency and energy head coefficient curves of the compressor stage at equivalent rotation speed for different real gas media also agree well with those of the origi-nal gas medium. Taking the real gas of CH4 as an example,the subsonic performance curves and working range at different Mach numbers almost display the same distribution trend at variable rotation speeds. But for transonic flow,the maximum efficiency value of performance markedly moves towards the working condition of large mass flow rate,and the higher Mach number,the narrower the operating range. As a result,the performance curves no longer meet the law of similarity at transonic rotation speeds.
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2016年第7期721-727,共7页 Journal of Tianjin University:Science and Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2012CB720101) 国家自然科学基金资助项目(51276125)
关键词 离心压缩机 实际气体 当量转速 气动性能 centrifugal compressor real gas equivalent rotation speed aerodynamic performance
  • 相关文献

参考文献14

  • 1Wolfram D,Carolus T H. Experimental and numericalinvestigation of the unsteady flow field and tone generationin an isolated centrifugal fan impeller [J]. Journal ofSound and Vibration,2010,329(21):4380-4397.
  • 2徐 忠. 离心压缩机原理[M]. 北京:机械工业出版社,1982.
  • 3Key B. Dynamic similitude theory:Key to understandingthe ASME compressor-performance test [J]. Journalof Petroleum Technology,1989,41(8):860-866.
  • 4Memmott E A. Stability analysis and testing of a train ofcentrifugal compressors for high pressure gas injection[J]. Journal of Engineering for Gas Turbines andPower,1999,121(3):509-514.
  • 5McNeely M,Rolls-Royce. Dresser-rand test for dolphinproject [J]. Diesel and Gas Turbine Worldwide,2005,37(5):63-65.
  • 6刘正先,王学军,戴继双,张楚华.Application of Factor Difference Scheme to Solving Discrete Flow Equations Based on Unstructured Grid[J].Transactions of Tianjin University,2009,15(5):324-329. 被引量:1
  • 7Taher M. ASME PTC-10 performance testing of centrifugalcompressors:The real gas calculation method [C]//ASME Turbo Expo 2014:Turbine Technical Conferenceand Exposition. Düsseldorf,Germany,2014,3B:1-10.
  • 8Huntington R A. Evaluation of polytropic calculationmethods for turbomachinery performance [J]. Journal ofEngineering for Gas Turbines and Power,1985,107(4):872-876.
  • 9Flathers M B,Baché G E. Aerodynamically inducedradial forces in a centrifugal gas compressor:Part 2-Computation investigation [J]. Journal of Engineeringfor Gas Turbines and Power,1999,121(4):725-734.
  • 10Schultz J M. The polytropic analysis of centrifugal compressors[J]. ASME Journal of Engineering for Power,1962,84(1):69-82.

二级参考文献37

  • 1程荣辉,雷丕霓,刘波,周拜豪,周盛.一种工程实用的多级轴流压气机特性二维数值计算方法[J].航空动力学报,2007,22(6):955-960. 被引量:13
  • 2Steinke R J. A compute code for predicting multi-stage axi- al-flow compressor performance by a meanline stage stac- king method[R]. NASA TP-2020,1982.
  • 3Mansour M, Hingorani S, Dong Y. A new multistage axial compressor designed with the APNASA multistage CFD code:Part 1 code calibration[R]. ASME Paper 2001-GT- 0349,2001.
  • 4Dong Y, Mansour M, Hingorani S,et al. A new multistage axial compressor designed with the APNASA multistage CFD code:Part 2 application to a new compressor design [R]. ASME Paper 2001-GT-350,2001.
  • 5Johnsen I A, Ullock R O. Aerodynamic design of axial flow compressors[R]. NASA N65-23345,1965.
  • 6Wassell A B. Reynolds number effects in axial compressors [R]. ASME Paper WA/GT-2,1967.
  • 7Kurzke J, Riegler C. A new compressor map scaling proce- dure for preliminary conceptional design of gas turbines ER]. ASME Paper 2000-GT-0006,2000.
  • 8Kong C D,Ki J Y. A ne scaling method for component maps of gas turbine using system identification[J]. Journal of Engineering for Gas Turbines Power, 2003, 125 (4): 979-985.
  • 9Nezym V Y, Polupan G P. A new statistical-based correlation for the compressor tandem cascade parameters effects on the loss coefficient[R]. ASME Paper GT2007-27245,2007.
  • 10Drummond C, Davison C R. Capturing the shape variancein gas turbine compressor maps [ R ]. ASME Paper GT2009-60141,2009.

共引文献2

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部