期刊文献+

复杂涌流下水下自主航行器横滚抑制控制仿真 被引量:1

Simulation of roll inhibition control of underwater autonomous vehicle in complex surge
下载PDF
导出
摘要 在复杂的海洋涌流背景下,水下自主推进航行器受到扰动较大,出现横滚导致控制稳定性下降,提出一种基于模糊PID扰动抑制的复杂涌流下水下自主航行器横滚抑制算法。构建在复杂涌流下的水下自主航行器运动状态模型,在航行器的纵向运动全包线内对横舵角、横滚角、回旋角等运动约束参量进行定常运动分析,采用模糊PID神经网络控制模型进行控制律的改进设计,结合Lyapunov稳定性原理进行横滚抑制和误差修正,实现控制算法改进。仿真结果表明,采用该控制算法进行复杂涌流下水下自主航行器横滚抑制控制,具有较好的输出响应跟踪性能,有效抑制横滚,提高了水下自主航行器的稳定控制能力,鲁棒性较好。 Under the complex background of ocean current, water self propulsion vehicle subject to greater disturbance, roll leading todecline in the stability control, based on Fuzzy PID to suppress the disturbance underwater autonomous vehicle roll suppression algorithmof the complex sympathetic inrush is proposed. Underwater independent vehicle motion model of complex surge flow, is constructed, in thevehicle longitudinal motion envelope on the horizontal rudder angle, roll angle and swing angle motion constraint parameters wereconstant motion analysis, adopted fuzzy PID neural network control model to the improved design of the control law, roll suppression anderror correction according to the Lyapunov stability theory, to realize the control algorithm improvement. Simulation results show thatusing this control algorithm complex freshness of underwater autonomous navigation transversely rolling inhibitory control, has good outputtracking performance, effectively inhibit the roll, improve the ability to sail of the underwater autonomous navigation, and it has a betterrobustness.
作者 赵威 王程成
出处 《智能计算机与应用》 2016年第3期11-14,共4页 Intelligent Computer and Applications
关键词 水下自主航行器 横滚 控制 扰动 鲁棒性 underwater autonomous vehicle roll control disturbance robustness
  • 相关文献

参考文献7

二级参考文献157

  • 1马翠芹,李韬,张纪峰.离散时间大种群随机多智能体系统的线性二次分散动态博弈[J].系统科学与数学,2007,27(3):464-480. 被引量:3
  • 2Alfaro V M, Vilanovab R. Robust tuning of 2DoF five-parameter PID controllers for inverse response controlled processes[J]. Journal of Process Control, 2013,23(4) : 453-462.
  • 3Gross J,Janke W,Banchmann M.Massively parallelized replica-exchange simulations of polymers on GPUs [J].Comput.Phys.Comm.,2011,182:1638-1644.
  • 4Tao G, Chen S, Joshi S M. An adaptive actuator failure compensation controller using output feedback[J]. IEEE Transactions on Automatic Control, 2002, 47(3): 506-511.
  • 5Blanke M, Staroswiecki M, Wu N E. Concepts and methods in fault-tolerant control[C]//Proceedings of the 2001 American Control Conference. Piscataway, NJ, USA: IEEE, 2001: 2606-2620.
  • 6Zhang Y, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229-252.
  • 7Staroswiecki M. On fault handling in control systems[J]. International Journal of Control Automation and Systems, 2008, 6(3): 296-305.
  • 8Zhao Y, Wu J, Shi P. H∞control of non-linear dynamic system: A new fuzzy delay partitioning approach[J]. IET Control Theory & Applications, 2009, 3(7): 917-928.
  • 9Lin C, Wang Q G, Lee T H, et al. Observer-based control for T-S fuzzy systems with time delay: Delay-dependent design method[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(4): 1030-1038.
  • 10Fridman E, Shaked U. Delay-dependent H∞control of uncertain delay system[J]. European Journal of Control, 2005, 11(1): 29-37.

共引文献260

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部