期刊文献+

挤压态Mg-Sn-Ca合金的显微组织、力学及生物腐蚀性能(英文) 被引量:4

Microstructure, mechanical and bio-corrosion properties of as-extruded Mg-Sn-Ca alloys
下载PDF
导出
摘要 制备了用于骨科的挤压态Mg-Sn-Ca合金,并应用金相显微镜、扫描电子显微镜、X射线衍射仪、拉伸测试、浸泡测试和电化学测试等仪器和方法对其进行研究。结果表明:当锡添加量为1%,钙含量从0.2%增加到0.5%时,挤压态Mg-Sn-Ca合金的显微组织变得均匀,力学性能增加,耐腐蚀性提高。钙含量进一步增加到1.5%时,合金的强度增加,但伸长率和耐腐蚀性降低。在钙含量为0.5%的合金中,锡的含量从1%增加到3%时,合金的最大抗拉强度增加,耐腐蚀性降低。当锡含量为2%时,合金呈现最低的屈服强度和伸长率。挤压态Mg-Sn-Ca合金的这些行为受到Sn/Ca比率的控制。分析表明挤压态Mg-1Sn-0.5Ca合金有潜力作为可降解骨科植入体。 The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochemical tests. The results showed that, with the addition of 1% Sn and the Ca content of 0.2%?0.5%, the microstructure of the as-extruded Mg?Sn?Ca alloys became homogenous, which led to increased mechanical properties and improved corrosion resistance. Further increase of Ca content up to 1.5% improved the strength, but deteriorated the ductility and corrosion resistance. For the alloy containing 0.5% Ca, when the Sn content increased from 1% to 3%, the ultimate tensile strength increased with a decreased corrosion resistance, and the lowest yield strength and ductility appeared with the Sn content of 2%. These behaviors were determined by Sn/Ca mass ratio. The analyses showed that as-extruded Mg?1Sn?0.5Ca alloy was promising as a biodegradable orthopedic implant.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1574-1582,共9页 中国有色金属学报(英文版)
基金 Project(2013CB632200)supported by the National Basic Research Program of China Projects(51474043,51531002)supported by the National Natural Science Foundation of China Projects(CSTC2013JCYJC60001,KJZH14101)supported by Chongqing Municipal Government,China Project(2015M581350)supported by the China Postdoctoral Science Foundation
关键词 镁合金 Mg-Sn-Ca合金 生物可降解性 骨科植入体 显微组织 力学性能 腐蚀 magnesium alloy Mg-Sn-Ca alloy biodegradation orthopedic implant microstructure mechanical properties corrosion
  • 相关文献

参考文献41

  • 1Nan Li,Yufeng Zheng.Novel Magnesium Alloys Developed for Biomedical Application:A Review[J].Journal of Materials Science & Technology,2013,29(6):489-502. 被引量:60
  • 2STAIGER M P, PIETAK A M, HUADMAI J, DIAS G. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27(9): 1728-1734.
  • 3Seyed Morteza Ghaffari SHAHRI,Mohd Hasbullah IDRIS,Hassan JAFARI,Babak GHOLAMPOUR,Mahtab ASSADIAN.固溶处理对可生物降解Mg-6Zn合金腐蚀性能的影响(英文)[J].Transactions of Nonferrous Metals Society of China,2015,25(5):1490-1499. 被引量:3
  • 4Z.S.SEYEDRAOUFI,Sh.MIRDAMADI.脉冲电沉积涂覆纳米羟基磷灰石的多孔Mg-Zn支架材料的体外生物降解能力和生物相容性(英文)[J].Transactions of Nonferrous Metals Society of China,2015,25(12):4018-4027. 被引量:2
  • 5WITTE F, FISCHER J, NELLESEN J, CROSTACK H A, KAESE V, PISCH A, BECKMANN F, WINDHAGEN H. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27(7): 1013-1018.
  • 6WITTE F, KAESE V, HAFERKAMP H, SWITZER E, MEYER-LINDENBERG A, WIRTH C, WINDHAGEN H. In vivo corrosion of four magnesium alloys and the associated bone response [J]. Biomaterials, 2005, 26(17): 3557-3563.
  • 7WITTE F, FISCHER J, NELLESEN J, VOGT C, VOGT J, DONATH T, BECKMANN F. In vivo corrosion and corrosion protection of magnesium alloy LAE442 [J]. Acta Biomaterialia, 2010, 6(5): 1792-1799.
  • 8EL-RAHMAN S S A. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment) [J]. Pharmacological Research, 2003, 47(3): 189-194.
  • 9NAKAMURA Y, TSUMURA Y, TONOGAI Y, SHIBATA T, ITO Y. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats [J]. Toxicological Sciences, 1997, 37(2): 106-116.
  • 10GU X, ZHENG Y, CHENG Y, ZHONG S, XI T. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials, 2009, 30(4): 484-498.

二级参考文献238

  • 1SCHUMANN S. The paths and strategies for increased magnesium applications in vehicles [J]. Mat Sci Forum, 2005, 488/489: 1-8.
  • 2WESTENGEN H, BAKKE P, ALBRIGHT D A. Advances in magnesium alloy development [C]// Proc. 61st Annual World Magnesium Conference 2004. New Orleans, Louisiana, USA, 2004: 33-44.
  • 3AGHION E, BRONFIN B, FRIEDRICH H. The environmental impact of new magnesium alloys on the transportation industry [C]// Magnesium Technology 2004. TMS, 2004:167-172.
  • 4LUO A A. Recent magnesium alloy development for powertrain applications [J]. Mat Sci Forum, 2003, 419/422: 57-66.
  • 5HAN Q, KAD B K, VISWANATHAN S. Design perspectives for creep-resistant magnesium die-casting alloys [J]. Phil Mag, 2004, 84: 3843-3860.
  • 6DARGUSCH M S, DUNLOP G L, PETTERSEN K. Elevated temperature creep and microstructure of die cast Mg-AI alloys [C]// Magnesium Alloys and their Applications. Werkstoff-lnformations GmbH, Wolfsburg, Germany, 1998: 277-282.
  • 7BAKKE P, WESTENGEN H. Die casting for high performance- Focus on alloy development [J]. Adv Eng Mat, 2004, 5: 879-885.
  • 8PEKGULERYUZ M O, LABELLE P, BARIL E, ARGO D. Magnesium diecasting alloy AJ62x with superior creep resistance [C]// Magnesium Technology 2003. TMS, 2003: 201-206.
  • 9PEKGULERYUZ M O, KAYA A A. Magnesium die casting alloys for high temperature applications [C]// Magnesium Technology 2004. TMS, 2004: 281-287.
  • 10BARIL E, LABELLE P, FISCHERSWORRING-BUNK A. AJ (Mg-AI-Sr) alloy system used for new engine block [R]. SAE Technical Paper Series 2004-01-0659.C.

共引文献73

同被引文献74

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部